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Abstract

Due to the complexity of thermal effects in porous electrodes, the process of

temperature rise in supercapacitors is difficult to be quantified by some simple but

physically meaningful formulas. Here, the stack-electrode model is applied to investi-

gate this issue both analytically and numerically. The numerical results show the pro-

cess has three relaxation times, which divide that into four stages controlled by heat

generation (HG) or heat transfer (HT). Temperature rise is first controlled by HG in

the bulk phase, then by HG in both porous electrodes and bulk phase, then mainly by

HT, and finally all by HT. The analytical formulas of three relaxation times and tem-

perature rise under different structural parameters and intensity of heat dissipation

are obtained. These formulas are expected to indicate the contribution of the differ-

ent stages to total temperature rise, thus to guide the design of cooling methods of

supercapacitors during the different stages.
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1 | INTRODUCTION

Supercapacitors have attracted tremendous attention due to rapid

charging and discharging, highly prolonged cycle life, and excellent

stability compared with batteries,1,2 showing great potential for the

green grid,3 portable electronics,4 and especially hybrid vehicles.1,5,6

In these typical commercial applications, supercapacitors are charged

and discharged at a very high current rate either for vehicle accelera-

tion or for braking energy recuperation, producing a large amount of

volumetric heat in a very short time that dramatically increases the

temperature of supercapacitors.7,8 An over-high temperature will lead

to the increase of capacitance internal pressure, the aging of the col-

lector, thus the increase of self-discharge rates, and then the shorten-

ing of cycle life.7,9,10 Eventually, the supercapacitors will be destroyed

and even exploded due to the evaporation and expansion of electro-

lytes under excessive temperature without any heat dissipation,

inducing safety problems.9,11 Consequently, deeply understanding the

thermal effect, especially quantizing the process of temperature rise

using simple formulas, and hence performing rational thermal manage-

ment are key issues concerning the performance, lifetime, and safety

of supercapacitors.12,13

Due to confinement effects,14,15 porous electrodes, especially

amorphous carbon electrodes,1,2 possess a denser packing of the ions

inside the pores compared with planar electrodes, resulting in a higher

capacitance and wider applications. However, porous electrodes also

lead to more heat generation (HG) and thus more insecurity. Besides,

the complex geometry of porous electrodes brings two more issues

when studying the thermal effects than planar electrodes. As shown

in Figure 1A, during the charging process, ions in the bulk phase are

driven toward and adsorbed on the surface of the micro-scale, evenPan Huang and Haolan Tao contributed equally to this work.
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nano-scale pores in porous electrodes by electrostatic interaction, to

produce current and to form electrical double layers (EDLs) in both the

bulk phase and the porous electrodes. Therefore, the first issue is how to

describe the thermal effect in porous electrodes, which is affected by a

complex coupling of confinement effect, migration of ions, heat transfers

(HTs), and the formation of EDLs.16–18 What's more, the model should

also consider the thermal effect in the bulk phase and the connection

with that in porous electrodes. The second issue is how to obtain some

simple formulas with physic meanings to describe the process of temper-

ature rise in porous electrodes, so as to scientifically guide the establish-

ment of a thermal management system of supercapacitors. For the

planar supercapacitor, the relaxation time of HG derived by the equiva-

lent circuit model (ECM) and that of HT18 can quantitatively divide the

process of temperature rise into three stages. The temperature rise dur-

ing three stages can be also obtained. However, ECM hardly describes

the irregular structure of amorphous carbon electrodes.

At present, in contrast to experimental methods, such as isother-

mal calorimeters,12 accelerated rate calorimeter,13 and miniature resis-

tance temperature detector (RTD) Sensor,19 the simulation techniques

provide effective alternatives to study the multiphysical field coupling

thermal effect and to measure the temperature rise in the porous

electrodes in situ.20 Among the commonly used simulation techniques,

the continuum models21–23 are faster than all atoms/coarse-grained

molecular dynamics simulations24,25 and are more accurate than

ECM26,27 at simulating the charging dynamics and temperature rise of

mesoscale system containing the bulk phase and porous electrodes.

The continuum model describes the evolution of ion concentration,

potential, and temperature by partial differential equations (PDEs),

such as Poisson-Nernst-Planck (PNP) equations, with given initial and

boundary conditions.28 However, for amorphous carbon electrodes

shown in Figure 1A, the boundary conditions are particularly compli-

cated due to irregular surface structure and the difference of spatial

scale between pore and bulk phase, leading to the time-consuming of

solving the PNP equations.29,30 Therefore, a variety of empirical

models or simplified geometric models of amorphous carbon elec-

trodes have been proposed. The equivalent porous medium models of

thermal effect in supercapacitors7,8,10 were first proposed to predict

the temperature distribution within a cell by solving the modified

energy equation with equivalent thermal conductivity. Nevertheless,

equivalent porous medium model ignores the microstructure of elec-

trodes. Then, Newman et al.31,32 develop the pseudo two-dimensional

(P2D) model to study charging process33 and thermal effect34 of lith-

ium ion battery. P2D model simulates the intercalation/

deintercalation process by assuming active material as isotropic spher-

ical particles of uniform size. Meanwhile, Bazant et al.35 presented a

novel porous electrode theory to describe the predominantly bimodal

distribution of pores consists of the macropores outside the particles

and the micropores inside the particles, which has been applied to

F IGURE 1 The supercapacitor with porous electrodes and its simplified simulation models. (A) The sketch of a supercapacitor containing a
1:1 electrolyte and two porous electrodes, and a battery providing an electrostatic potential difference 2Ψ. (B) In the one-dimensional stack-
electrode model, the cathode and anode each contain n infinite planar electrodes at intervals of h. Initial anionic and cationic densities are ρbulk
throughout the cell. At time t¼0, þΨ and �Ψ are applied to all electrodes on the left and right-hand sides of the system, respectively. The zoom-
in view of the interface of electrode and electrolyte indicates that the planar electrode is infinite and has no thickness. Notably, it is assumed that
every electrode has penetrable zones except for the outmost one and the ions can pass through them. (C) The equivalent circuit model (ECM) for
the one-dimensional stack-electrode model
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capacitive deionization,21,36,37 salinity gradient power generation38

and electrochemical systems.39 However, these abovementioned

models employ the volume averaging method to simplify the struc-

tural complexities and introduce volume fraction and tortuosity as

two effective structural descriptors rather than exact multiscale geo-

metrical detail.40,41 Fractal dimension is an alternative to represent

the geometrical detail. Recently, Huang40 studied the impedance

response of a porous electrode with a fractal microscopic pore struc-

ture by solving fractional PDEs. However, fractional PDEs are hard to

be solved analytically than integer order PDEs, and the only way to

get relaxation time is to fit the numerical solutions, which has limited

applicability and less physical significance. Therefore, a simplified

model representing both complex microstructure of amorphous car-

bon electrodes and macrostructure of the bulk phase is in urgent

demand, with which the analytical formulas of relaxation time and

temperature rise in the charging and temperature rise processes are

expected to be derived. More recently, Lian et al.23 have proposed a

novel, simple and physics-based stack-electrode model to represent

the porous electrode and bulk phase, and successfully explained the

slow charging dynamics of supercapacitors with amorphous carbon

electrodes by the PNP equations and the ECM. Besides, they derived

the formulas of relaxation times of surface charge and found the

charging process can be divided into three stages by two relaxation

times, which has been observed in the experimental data.13

Whereafter, Lin et al.42 applied the stack-electrode model to the cyclic

voltammetry in porous electrodes.

In this work, we utilize the stack-electrode model to simplify

amorphous carbon electrodes and study the thermal effect in super-

capacitor by ECM, and the PNP and heat equations, as shown in

Figure 1. Simple formulas with physical meanings of relaxation times τ

and adiabatic temperature rise ΔTeq in porous electrode are first

analytically derived by ECM. Then, the ion-charge-heat coupled

numerical simulations based on the PNP and heat equations are

implemented to find the number of stages of temperature rise char-

actered by τ. Meanwhile, the effects of HG and HT on every stage of

temperature rise in the bulk phase and porous electrodes are revealed.

Then, we discuss the roles of structural parameters on τ, ΔTeq, and

temperature rise at the end of every stage ΔTτ , simultaneously verify

and optimize these formulas derived by ECM. Finally, the influences

of heat dissipation are studied to lay the foundation of thermal man-

agement of supercapacitors with porous electrodes.

2 | METHODOLOGY

2.1 | The stack-electrode model

2.1.1 | The simplification process of amorphous
carbon electrode structure

Figure 2 shows the simplification process from two-dimension amor-

phous carbon electrode to one-dimension stacked planar electrodes.

Figure 2A,B is planar electrode and amorphous carbon electrode,

respectively. Notably, the thickness of amorphous carbon electrode is

H and the pore size r is uniform. Electronic connections through the

electrode (drawn as black lines) allow for the injection of charge from

an external circuit.21 Figure 2C is an ideal cell model43 constructed by

an array of square electrodes (i.e., carbon particle in Figure 2B) with

side length w. To make the next simplification process easier to under-

stand, the gaps along y direction are named by permeable zones and

colored by gray, as shown in Figure 2D. Because the porous electrode

is infinitely large along y direction and all ions are ideal point charge, we

F IGURE 2 (A) Planar
electrode and the simplification
process from (B) amorphous
carbon electrode with uniform
pore size to (C) ideal cell model to
(D) ideal cell model with
permeable zones to (E) stacked
planar electrodes with thickness
to (F) stacked planar electrodes
without thickness

3 of 15 HUANG ET AL.
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assume that the square electrodes along y direction are macroscopically

connected to form a planar electrode of thickness w but microscopi-

cally separated by permeable zones, as shown in Figure 2E. The influ-

ence of w on charging dynamics is ignored if porosity tends to

1 (i.e., w� r). Figure 2F presents the final simplified model of

amorphous carbon electrode in this work, where the number of

planar electrodes is n and the interlayer spacing of adjacent planar

electrodes is h. The simplified model can reflect the key properties of

porous electrode and can be solved quickly.

All assumptions of simplification process and their reasonableness

are listed in Section S2. These assumptions will be relaxed in future

studies.

2.1.2 | The physical meanings of structure
parameters

The pore size r can be measured by Brunauer-Emmett-Teller (BET)

and the ratio of carbon particle size w to r can be obtained from SEM

image. n is the number of planar electrodes and related to r and w,

that is n¼ Hþ rð Þ= wþ rð Þ, where H is the thickness of electrode. So, n

is like an index for indicating the depth of the pore. Meanwhile,

H¼ n�1ð Þh, where h is the interlayer spacing of adjacent planar elec-

trodes. Therefore, the relation between h and r is h¼ n= n�1ð Þwþ r. If

w� r (porosity tends to 1), h! r. So, h could moderately represent

the pore size of amorphous carbon electrode r, which can be adjusted

by n and H.

2.1.3 | Charging process

A simplified one-dimensional stack-electrode model of supercapacitor

with porous electrodes23 is introduced in Figure 1B, containing a 1:1

electrolyte and stacked planar electrodes separated by a distance 2L.

In the layered electrode structure, both cathode and anode are com-

posed of n planar electrodes with no thickness, as shown in Figure 2F.

Once the potential difference 2Ψ is applied by battery, electrons are

transferred to the surface of the planar electrode by the black lines,

leading to an electric field. The opposite ions from the bulk phase are

driven to counter the inside planar electrode through permeable

zones, subsequently forming the EDLs near all the planar electrodes.

The equilibrium thickness of the EDL is characterized by the Debye

length λD ¼ κ�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε0εrkBT0ð Þ= 2e2ρbulkð Þ

p
, with ε0 the vacuum permit-

tivity, εr the relative permittivity of electrolyte, kB the Boltzmann con-

stant, T the temperature, e the elementary charge, and ρbulk the bulk

ionic number density.

2.2 | Analytic method: Equivalent circuit model

To give an accurate description of the influence of these structural

parameters and operating conditions in the stack-electrode model on

thermal effect, an ECM is introduced, as shown in Figures 1C and 3.

The capacitor represents the energy storage capacity of EDL and the

resistor represents the resistance of electrolyte in nanopores and the

bulk phase. Notably, ECM can only simulate HG in supercapacitors.

The capacitance of the outmost capacitor is C because only one side

contacts with electrolyte.

2.2.1 | n¼1 case

The planar supercapacitors can be described by the circuit model of trivial

n¼1 case shown in Figure 3A. Interfacial charge storage at the EDL is

C and the ion transport resistance through the electrolyte is R. Once a

potential difference 2Ψ is applied at t¼0, the capacitor will acquire a

time-dependent charge Q tð Þ¼Cφ tð Þ, where φ tð Þ is the time-

dependent voltage difference between either side of the capacitors.

The current I that flows through the system is found via Ohm's law,

IR¼ Ψ�φ tð Þ½ �� �Ψþφ tð Þ½ � ¼2 Ψ�φ tð Þ½ �. With I¼ _Q tð Þ¼C _φ tð Þ, we

get _φ¼2 Ψ�φ tð Þ½ �= RCð Þ. For φ t¼0ð Þ¼0, the φ tð Þ can be

expressed as:

φ tð Þ¼Ψ 1�exp � 2t
RC

� �� �
: ð1Þ

Since the EDL capacitance C¼Aε0εrκ and electrolyte resistivity R¼
2L= Aε0εrκ2D

� �
with A the surface area facing the electrolyte and D

the ion diffusivity, we can find RC¼2Lκ�1=D¼2τRC , where the relaxa-

tion time of the RC circuit23 τRC ¼ Lκ�1=D. Therefore, the relaxation

time of surface charge τσ ¼RC=2¼ τRC .

Assuming the capacitor does not generate heat, and Joule heat

generated by the resistor is the only source of heat, then the HG

power P0 of the circuit is:

P0 ¼ Ψ�φ tð Þð Þ� �Ψþφ tð Þð Þ½ �2
R

¼4Ψ2

R
exp � 4t

RC

� �
, ð2Þ

∂T
∂t

¼ ∂ T�T0ð Þ
∂t

¼ P0
ρm,bulkcP 2 HþLð ÞA½ �

¼ ϵκ4D

ρm,bulkcP
	
1þH

L


2

Ψ2

κLð Þ2
exp � 4t

RC

� �
,

ð3Þ

ΔT0 ¼ T�T0 ¼
ðt
0

∂T
∂t

dt

¼ ϵκ2

2ρm,bulkcP
	
1þH

L


 Ψ2

κL
1�exp � 4t

RC

� �� �

¼ Teq 1�exp � 4t
RC

� �� �
,

ð4Þ
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where T0 is the initial temperature and Teq is the adiabatic tempera-

ture rise at equilibrium. Therefore, the relaxation time of HG is:

τg ¼ τg,0 ¼RC=4¼ Lκ�1= 2Dð Þ¼0:5τRC: ð5Þ

2.2.2 | n¼2 case

For n¼2, the outer capacitors (i¼2) have a capacitance C, while inner

capacitors (i¼1) have 2C, because inner planar electrodes are

facing the electrolyte twice, as shown in Figure 3B. The electrolyte

resistivities in the bulk phase and pore are R¼2L= Aε0εrκ2D
� �

and

R� ¼H= Aε0εrκ2D
� �

, respectively. Hence, R�=R¼H= 2Lð Þ and

RC¼2κ�1L=D. Lian et al.23 have successfully solved the matrix

formula for the voltage difference between either side of the capaci-

tor φi tð Þ. Here, we rederive the full formula for φi tð Þ, following the

above procedure of n¼1:

φ1 tð Þ¼H
L

u11u22B1�u12u21B2ð Þ
u11u22�u12u21

Ψ and

φ2 tð Þ¼H
L

u21u22B1�u22u21B2ð Þ
u11u22�u12u21

Ψ,
ð6Þ

B1 ¼ 1�exp � λ1t
2R�C

� �� �
1
λ1

and B2 ¼ 1�exp � λ2t
2R�C

� �� �
1
λ2

, ð7Þ

λ1,λ2 ¼ eig M
!	 


and M¼ 1
2R�C

1þ2R�=R �1
�2 2

� �
, ð8Þ

where u21=u11 ¼1þH=L� λ1, u22=u12 ¼1þH=L�λ2, λ1, and λ2 are

the eigenvalues of the matrix M.

The HG powers in the bulk phase P0 and in the pore P12 are:

P0 ¼ 4H2

L2
F2

Ψ2

R
L
HF

�G11

λ1
�G12

λ2

� �
þG11

λ1
exp � L

H
λ1t
RC

� �2
4

þ G12

λ2
exp � L

H
λ2t
RC

� �35
2

,

ð9Þ

P12 ¼2H
L
F2

Ψ2

R
G21

λ1
þG22

λ2

� �
�G21

λ1
exp � L

H
λ1t
RC

� �
�G22

λ2
exp � L

H
λ2t
RC

� �� �2
,

ð10Þ

where G11 ¼ u22=u12, G12 ¼�u21=u11, G21 ¼ �u21=u11þ1ð ÞG11,

G22 ¼ �u22=u12þ1ð ÞG12, and F¼1= G11þG12ð Þ.
The relaxation time τ is only determined by the exponential term

of the above equation with λmin (i.e., the smallest eigenvalue of M),

therefore:

τg ¼ τg,0 ¼ τg,12 ¼ 1
λmin

H
L
RC¼ 2H=L

λmin 1þH=Lð ÞτRC: ð11Þ

Besides, the relaxation time of surface charge τσ1 ¼ τσ2 ¼2R�C=λmin ¼ τg .

2.2.3 | General n case

A circuit model for the n-electrode setup is shown in Figure 1C. Simi-

lar to the previous subsection, the outermost capacitor has a capaci-

tance C, while the others have 2C, as they mimic electrodes with

electrolytes on either side. The relaxation time of HG is expressed as:

F IGURE 3 The equivalent
circuit models (ECM) for the stack
electrode model in the trivial
cases (A) n¼1 and (B) n¼2

5 of 15 HUANG ET AL.
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τg,0 ¼ τg,12 ¼…¼ τg, n�1ð Þn ¼
2H=L

n�1ð Þλmin 1þH=Lð ÞτRC , ð12Þ

λmin ¼min eig Mð Þð Þ and M¼ 1
2R�C

1þ H=L
n�1

�1

�1 2 �1

�1 . .
. . .

.

. .
. . .

. �1
�1 2 �1

�2 2

0
BBBBBBBBB@

1
CCCCCCCCCA
,

ð13Þ

where M is a tridiagonal matrix that is Toeplitz except for two ele-

ments (M1,1 and Mn,n�1) and R� ¼ h= Aε0εrκ2D
� �

. The fitting formula of

λmin concerning n and H=L is λmin ¼ωnβ , where ω¼
�0:275 H=L�3:4ð Þ2�2:23 and β¼0:0075 H=L�2:5ð Þ2�2:23, as

shown in Figure S1. Interestingly, the relaxation time of surface

charge τσ is theoretically equal to the relaxation time of HG τg except

for the case of n¼1.

2.3 | Numerical method: The Poisson-Nernst-
Planck and heat equations

The electrostatic potential ϕ x,tð Þ, the local ionic number densities

ρ x,tð Þ, and the local temperature T x,tð Þ are modeled via the PNP and

heat equations18:

∂ρ�
∂t

þr� J� ¼0, ð14Þ

J� ¼�D� rρ�þ z�eρ�
kBT

rϕþρ�Q
�
�

kBT
2
rT

� �
, ð15Þ

ε0εrr� �rϕð Þ¼ eq, ð16Þ

∂T
∂t

¼ ar2T� e
ρm,bulkcp

Jþ� J�ð Þrϕ, ð17Þ

where � represents cation and anion, J� the ionic flux, D� the diffu-

sion coefficient, z� the valence of ion, Q�
� single-ion heats of trans-

port, q¼ zþρþ þ z�ρ� the space charge density, a¼ k= ρm,bulkcp
� �

the

thermal diffusivity, k heat conductivity, ρm,bulk the mass density of the

bulk phase and cp the specific heat capacity. Equation (15) accounts

for diffusion, electromigration, and thermo-diffusion, respectively.

Equation (17) is the heat equation, where the left part is the rate of

change of T with time, the right parts are the rate of HT and HG,

respectively.

Initially, the ionic density and temperature profiles are homo-

geneous, and the electric potential is zero. Thereafter, at t¼0, the

electric potentials �ψ and ψ are suddenly applied to the anode and

cathode, respectively. In this work, we study two ideal situations for

heat dissipation of supercapacitor, namely isothermal and adiabatic

conditions, and other general situations. The details of initial condi-

tions and boundary conditions are listed in Section S3.

Lian et al.23 have proved that the PNP equations based on the

stack-electrode model can be calculated over macroscopic length

scales. There are as much as 5-orders-of-magnitude gap between

experimental relaxation times and those predicted in simple planar

electrode model. In contrast, the two timescales of charging obtained

by the stack-electrode model are roughly within 1 order of magnitude

from the two timescales observed in the experimental data.13 Given

the simplicity of the stack-electrode model, the remaining discrepan-

cies are not surprising.23

2.4 | Parameters setup and numerical details

The current work focuses on the aqueous NaCl electrolyte at

T0 ¼298:15K. The ions Naþ (i¼þ) and Cl� (i¼�) have valency

zþ ¼�z� ¼1. We use the following parameter set18,44

D� ¼1:6�10�9 m2=s, εr ¼71, ρbulk ¼998:3kg=m3, cP ¼4:182kJ=

kg �Kð Þ, a¼1:435�10�7 m2=s, and c0 ¼10mol=m3, while Q�
þ ¼

4:05�10�21 J and Q�
� ¼8:09�10�22 J. Therefore, the Debye length

λD ¼ κ�1, thermal voltage Vm and heat conductivity k are equal to

2:87�10�9 m, 0:02526V, and 0:599W= m �Kð Þ, respectively. The

number of planar electrodes on a side n, the relative half size of

electrolytic cell κL, the relative size of the electrode H=L, and the

zoom factor of the flux of heat dissipation d are changeable parame-

ters. The detailed parameter settings can be found in Table S1.

The one-dimensional governing equations and the associated

initial and boundary conditions were solved using finite element

methods (FEM). For FEM-models, a direct solver MUMPS

(Multifrontal Massively Parallel Direct Solver) was used with a

damped Newton–Raphson approach, where the relative tolerance

factor is 10�5. The mesh size has the smallest value at the electrode

surfaces, about 0:1λD, due to the large potential, concentration and

temperature gradients, and then gradually increased away from these

boundaries. The mesh was refined by reducing the element size at

the electrode surfaces and the maximum element growth rate (1.2).

The numerical solution process was implemented in COMSOL

Multiphysics 5.3, which automatically converts the governing equations

to weak formulations and corresponding weak boundary conditions.

3 | RESULTS AND DISCUSSION

3.1 | Thermal effects coupled with ion-charge
transports in bulk phase and porous electrodes

In Figure 4, we present the numerical results of thermal effects

coupled by multiple physical fields for the stack-electrode model of

n¼4, H=L¼1, and κL¼100 in adiabatic conditions. For the sake of

convenience, pores are named by pore1, pore2, and pore3 in turn

according to the distance from the center of the bulk phase (mid,

x¼0), as shown in Figure 4A. Figure 4B–D presents the change of the

dimensionless temperature rise ΔT=ΔTeq, the variation of ionic con-

centration cþþc� �2c0ð Þ= cþ,eqc�,eq�2c0ð Þ in the center of pores and
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bulk phase, and the surface charge density σ= 2Ψρbulk=κð Þ on plates

with dimensionless charging time t=τRC , respectively. ΔT¼ T�T0 and

ΔTeq is the adiabatic equilibrium temperature rise. τRC is the relaxation

time of charging (surface charge) of planar supercapacitors derived by

ECM.23 The charging time is 10�5τRC 	105τRC and system is assumed

to be in equilibrium at 105τRC . Notably, the surface charge density is

calculated by Gauss's law σ tð Þ¼�2ρbulkκ
�2 ∂xϕ xþ � ∂xϕj jx�
� �

. As the

outermost electrodes face the electrolyte only at one side, σeq on the

outermost electrodes is a factor two smaller than the surface charge

density of the other electrodes.

The results show that temperature first rises in the bulk phase

and then in the porous electrode, as shown in Figure 4B. Besides, the

deeper the pore, the slower the local temperature starts to rise. It is

understood by that the heat first generates in the bulk phase due to

higher thermal resistance and current and then transfer to the porous

electrode. The ions from the bulk phase can pass through the inside

planar electrode with permeable zones to the outermost one, and sub-

sequently adsorbed on the surfaces of all planar electrodes to form

the EDLs. Therefore, the ionic concentration in the center of the

closer pore (i.e., pore1) and surface charge density (or EDL) on the

closer planar electrode (i.e., plate 1) increases (or forms) at the fastest

speed, as shown in Figure 4C,D. The variation of ionic concentration

in pores is caused by the ion migration and the formation of EDLs

together. Ion migration leads to higher concentration, and then the

formation of EDLs decreases the concentration, finally resulting in the

peaks in Figure 4C. Because the center of the bulk phase (mid) is far

away from the plate than the center of pores, the variation of ionic

concentration caused by forming EDLs is slower than those in pores.

Besides, we find the end time of temperature rise is the same as that

of surface charge relaxation while faster than that of concentration

relaxation.

Although Figure 4 shows the difference of starting time and end

time between pores and bulk phase in charging dynamics and ther-

mal effect, the process of temperature rise needs to be quantita-

tively refined to many stages to better design the heat management

system.

3.2 | The four stages of thermal effect
characterized by relaxation times

For the same parameters, in Figure 5, we show the relaxation process

of temperature rise for the stack-electrode model of n¼4 in adiabatic

conditions. The relaxation time τ (s) is the timescale of a variable of

the system (e.g., T and c) or some dynamic processes (e.g., HG and

HT) from an initial state to a steady state.

F IGURE 4 (A) The schematic diagram of the stack-electrode model of n¼4, H=L¼1, and κL¼100 in adiabatic conditions. The pores are
named by pore1, pore2, and pore3 in order of distance from the center of the bulk phase (mid, x¼0). The change of the dimensionless
(B) temperature rise ΔT=ΔTeq, (C) variation of ionic concentration cþ þc��2c0ð Þ= cþ,eqþc�,eq�2c0ð Þ in the center of pores and bulk phase, and
(D) surface charge density σ= 2Ψρbulk=κð Þ on the surface of planar electrodes with dimensionless charging time t=τRC
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3.2.1 | The relaxation process of adiabatic
temperature rise

The relaxation processes of temperature rise 1�ΔT=ΔTeq in the cen-

ter of the bulk phase (mid) and pores are plotted in Figure 5A,B. The

results show that the curve characterizing the temperature relaxa-

tion in the center of the bulk phase has three steady slopes while

the curves describing the cases in the pores have two ones, indicat-

ing three relaxation times (i.e., four stages) in the process of temper-

ature rise. Figure S2 shows the relaxation processes among

temperature, ionic concentration, and surface charge at three

steady slope periods, respectively. During the second steady slope

period, the lines describing the temperature relaxations in both

pores and bulk phase overlap with the lines describing the relaxa-

tion process of surface charge density at pore walls, indicating the

second relaxation time of temperature rise relates directly to the

surface charge.

3.2.2 | The numerical solutions of three relaxation
times and comparation with analytical solutions

To accurately characterize different time responses during the relaxa-

tion process, according to a purely exponential temperature difference

F IGURE 5 The four stages of thermal effect in the center of bulk phase (mid) and pores. (A, B) The relaxation processes of adiabatic
temperature rise 1�ΔT=ΔTeq within dimensionless charging time t=τRC. (C) The time-dependent function of relaxation time τ tð Þ=τRC and three
numerical solutions τ1, τ2, and τ3. (D) The comparations between numerical solutions and analytical solutions (τg and τt), where τg is the relaxation
time of heat generation derived by ECM and τt ¼ HþLð Þ2=a is the relaxation time of HT of planar supercapacitors.18 (E) The contribution degree
(CD) of Pg to Pa (i.e., CDP,g ¼Pg=Pa, solid lines), where Pg and Pa are the rate of change of temperature over time caused by heat generation and
heat accumulation, respectively. The dashed line represents the change of dimensionless temperature rise ΔT=ΔTeq with t=τRC
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ΔT¼ΔTeq 1�exp �t=τð Þ½ � caused by HG as Equation (4), a time-

dependent function τ tð Þ is defined as:

τ tð Þ¼� d ln 1�ΔT=ΔTeqð Þ
dt

� ��1

, ð18Þ

which intersects with y¼ x (i.e., τ tð Þ¼ t) to obtain different relaxation

times τi. i represents different time responses. Accordingly, as shown

in Figure 5C, τ2 is the real intersection value, while τ1 and τ3 are the

points of intersections with the extended lines of two platforms. Plat-

form means only one process controls ΔT while curves are the results

of multiple processes together. The values of the x-coordinate in

which two platforms begin to change or to un-change are denoted by

τ1,0 and τ3,0, respectively. Notably, three pores have no first platform

since HG in pores is much less than that in the center of bulk phase at

early times, due to the lower resistance and current.

To analyze analytical errors, the τ1 and τ2 in the center of the bulk

phase and pores are nondimensionalized by τg derived by ECM, and τ3

are nondimensionalized by τt ¼ HþLð Þ2=a, as shown in Figure 5D. τt is

the relaxation time of HT of planar supercapacitors.18 The result indicates

that τ2 approaches to the theoretical solution of HG (≈1:0τg). Besides,

the position of pores does not influent on τ3 but on τ2.

3.2.3 | The relations between HG and HT in four
stages of temperature rise

To explain the physical significance of the three relaxation times and

to explore the dominant processes between the HG and HT in the

four stages, the contribution degree of HG CDg on the rates of tem-

perature change over time P (solid lines) are plotted in Figure 5E. The

formula of CDp,g is defined as follows:

CDP,g ¼ Pg
Pa

¼
� e

ρm,bulkcp
Jþ � J�ð Þrϕ

∂T=∂t
, ð19Þ

where Pg and Pa are the second part in the right (HG) and left part

(heat accumulation) of Equation (17), respectively. Moreover, the con-

tribution degree of HT CDP,t is equal to 100%�CDP,g . If CDP,g

exceeds 100% or CDP,t is less than zero, heat here will transfer to the

surrounding. Because HT results from temperature differences pro-

duced by heterogeneous HG, we then tend to first consider the domi-

nant process from the perspective of HG not HT.

Notably, stage1 and stage4 are segmented into two substages by

τ1,0 and τ3,0 separately. At the first substage of the stage1, the CDP,g

in the center of bulk phase is almost 100%, indicating the HG in the

bulk phase is dominant for the temperature rise. In the next substage,

the CDP,g in the pores start to increase and CDP,g in the center of the

bulk phase exceeds 100%. Therefore, the HGs in the pores gradually

affect the ΔT in the pores but the heat from the bulk phase is still the

primary cause of temperature rise, and the HGs in the bulk phase are

still dominant for the ΔT. At stage2, CDP,g in the center of the bulk

phase and pores gradually decrease but the effect of HT on

temperature rise is not significant. What's more, the end time of the

stage2 (i.e., τ2) is equal to the theoretical solution of relaxation time of

HG τg , which further proves the conclusion that stage2 is controlled

by HG in the bulk phase. At stage3, HT gradually plays a more and

more significant role in the temperature rise than the HG, and CDP,t

gradually reach 99:9% (i.e., CDP,g !0). The reason is that HG has

reached theoretical equilibrium at the end of stage2. Finally, HT is the

dominant process of stage4.

Furthermore, for this case, we find the temperature rise mainly

occurs in the second substage of stage1, stage2, and stage3, as shown

in the dashed line in Figure 5E. Therefore, at these stages, specific

thermal management methods can be adopted to reduce the tempera-

ture rise caused by different mechanisms, such as HG or HT.

3.3 | The relationships between relaxation times
and porous structures

To explore the relationships between three relaxation times and porous

structures, the numerical simulations with different structural parameters

(i.e., n, H=L, and κL) are performed. n is the number of planar electrodes

on a side, H=L reflects the relative size of the electrode than L, and κL

represents the relative half size of the electrolytic cell than λD. The

influence of n, H=L, and κL on τ1, τ2, and τ3 are plotted in Figure 6. The

upper (white) parts of every subfigure show the change of the numerical

solutions of three relaxation times with structural parameters. In the lower

(gray) parts of every subfigure, the numerical solutions of three relaxation

times are divided by the theoretical solutions of relaxation time of HG

derived by ECM (i.e., τg) or those of HT in planar electrode (i.e., τt). If all

points are on a horizontal line, this indicates that the formula of τg or

τt has already taken the corresponding structural parameter into

account, while it should be modified if not on a horizontal line.

3.3.1 | The first relaxation time τ1

We find that both n and H=L have a great influence on τ1=τRC except

for κL because n and H=L can change the relative size of resistance

between the bulk phase and one pore (i.e., L=h). If the resistances of

pores are smaller (i.e., greater n or less H=L causing smaller h), HG in

the bulk phase will dominant the temperature rise process for a longer

time, and thus the start time of stage2 is delayed (i.e., greater τ1=τRC).

The τ1=τg of every n and κL are almost equivalent while τ1=τg gradu-

ally increase with the decrease of H=L. The fitted formula between

τ1=τg and H=L is 0:16 H=Lð Þ2�0:6 H=Lð Þþ0:742, as shown in

Figure S3a. Therefore, the modified formula of τ1 is as follows:

τ1 ¼ 0:16 H=Lð Þ2�0:6 H=Lð Þþ0:742
h i

τg

≈
0:3 H=Lð Þ2�4H=Lþ5

h i
H=Lð Þ

n�1ð Þλmin κLð ÞD

¼
0:3 H=L�2ð Þ2þ1

h i
H=Lð Þ

n�1ð Þλmin κLð ÞD :

ð20Þ
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Notably, τ1,H=L¼0=τ1,n¼1 ¼1:06≈1, where τ1,H=L¼0 is the value

of the fitted curve when H=L¼0 and τ1,n¼1 is the first relax-

ation time calculated from the simulation of planar super-

capacitors. This proves the stack-electrode model can returns

to planar electrode model when H=L!0. The error is due to

the overlap of EDLs caused by the decrease of pore diameter

h¼ H=Lð Þ κLð Þ½ �= κ n�1ð Þ½ �≤2λD with the reduction of H=L. What's

more, this also supports the description that the stage1 is mainly

controlled by the HG in the bulk phase rather than in the pores or

in both.

3.3.2 | The second relaxation time τ2

For τ2=τRC , the trends with n, H=L, and κL are similar to those of

τ1=τRC . The great n and small H=L result in relatively small pore diame-

ter h=L and greater heat-transfer resistance, causing difficulty of HT

from the bulk phase to the outmost pore (i.e., greater τ2=τRC). Interest-

ingly, τ2=τRC in the center of bulk phase sharply increases as the size

of the system κL increases while those in the pores stay the same, as

shown in Figure 6F. The abnormal rise can be explained by the ratio

of the timescales of HG to HT, namely:

F IGURE 6 The influence of structural parameters on three relaxation times τ1, τ2, and τ3 (upper part of every subfigure), and the comparation
between numerical solutions and analytical solutions (lower part of every subfigure) in the center of the bulk phase and pores in adiabatic
conditions. (A, D, G) n¼ 2, 5, 10, 15, 20f g, (B, E, H) H=L¼ 0:1, 0:2, 0:5, 1,2f g, and (C, F, I) κL¼ 50, 100, 200, 500, 1000f g. The default values of
these parameters are n¼4, H=L¼1, and κL¼100 unless adjusting one of them
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τg
τt
¼ 2H=L

n�1ð Þλmin 1þH=Lð ÞτRC
� �

Hþ1ð Þ2
a

" #

¼2a
D

H=L
λmin n�1ð Þ κLð Þ :

ð21Þ

The τg=τt for κL¼ 50, 100, 200, 500, 1000f g equal to

15:8, 7:9, 4:0, 1:6, 0:8f g. If τg=τt 
1 (i.e., κL¼50, 100, 200), the

boundary of HG and HT is clear, and the values of τ2=τRC in the center

of bulk phase and pores are closer. However, if τg=τt !1

(i.e., κL¼500) and even τg=τt <1 (i.e., κL¼1000), the boundary will

vanish and HT will significantly affect the thermal effect in stage2,

which causes stage2 to be divided into two substages by τ2,0 like

stage1 and stage4 (see Section S4 for details). The fitted formula

between τ2 and κL is:

τ2,mid ¼ 3�10�7 κLð Þ2þ2000 κLð Þ
h i

þ0:928
n o

τg

¼
6�10�7 κLð Þ2þ2000 κLð Þ

h i
þ0:928

n o
H=Lð Þ

n�1ð Þλminþ κLð ÞD

¼
6�10�7 κLþ1000ð Þ2þ0:328
h i

H=Lð Þ
n�1ð Þλmin κLð ÞD ,

ð22Þ

τ2,pores ¼ τg ¼ 2 H=Lð Þ
n�1ð Þλmin κLð ÞD : ð23Þ

The detailed fitting results are shown in Figure S3b.

3.3.3 | The third relaxation time τ3

For stage3, τ3=τRC almost exponentially grows with the increase of n,

H=L, and κL. The stage3 is controlled by HT, which makes the temper-

ature distribution homogenous. The greater absolute size of super-

capacitors (i.e., HþL) and larger temperature difference between the

bulk phase and pores Tbulk�Tporej j cause a longer time of HT from

the bulk phase to the outermost pores. Greater H=L and κL result in

the bigger HþL. Meanwhile, greater n leads to greater Tbulk�Tporej j
due to lesser heat produced in pores than in the bulk phase under

greater n. Only the curve between τ3=τt and n are not on a horizontal

line because τt ¼ κ HþLð Þ=a is not related with n. The relationship

between τ3 and n satisfies the following formula:

τ3 ¼ 0:0014n3�0:0225n2þ0:0882nþ9:147
� �

τt

≈
0:0014n nþ8ð Þ2þ9:147
h i

κLð Þ2 1þH=Lð Þ2

κ2a
:

ð24Þ

See Figure S3c for details.

3.4 | The relationships between adiabatic
temperature rise at equilibrium and porous structures

The adiabatic temperature rise at equilibrium ΔTeq ¼ Teq�T0 is

another important indicator to quantify the thermal effect. In

F IGURE 7 The adiabatic temperature rise at equilibrium ΔTeq ¼ Teq�T0 for different (A) n, (B) H=L, and (C) κ. (D) The changes of temperature
κLð Þ 1þH=Lð Þ= 2:25n�1ð Þ½ �ΔTeq with different structural parameters
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Figure 7, the changes of ΔTeq with structural parameters are plotted.

With the decrease of H=L and κL and the increase of n, ΔTeq increases

almost linearly, which can be explained by Equation (4). When

charging time is infinite (i.e., t¼105τRC in this work), the system

reaches equilibrium and 1�exp �4t= RCð Þð Þ½ �!1. Therefore,

ΔTeq ¼C= κLð Þ 1þH=Lð Þ½ �, where C is a constant independent of κL and

H=L. Because Equation (4) is not suitable for the case of n>1, and the

analytical solution is complicated, the relation between ΔTeq and n is

fitted as ΔTeq 	2:25n�1. Therefore, ΔTeq with different structural

parameters can be modified as:

ΔTeq ¼ ϵκ2Ψ2

2ρm,bulkcP

� �
2:25n�1
κLð Þ 1þH=Lð Þ : ð25Þ

Finally, to verify the formula, the temperature κLð Þ 1þH=Lð Þ=½
2:25n�1ð Þ�ΔTeq with different structural parameters is shown in

Figure 7D. We can find that all points are at the same height, which

demonstrates that Equation (25) can predict the adiabatic tempera-

ture rise for different structures.

3.5 | The relationships between temperature rise
at the end of every stage and porous structures

Because every stage is controlled by one of HG and HT or both, the

temperature rises at the end of every stage and those during every

stage are important for comparison of the contribution of HG and HT

F IGURE 8 The influence of structural parameters on ΔTτi (i.e., ΔT at τ1, τ2, and τ3) (upper part of every subfigure), and a factor B (lower part
of every subfigure) in the center of the bulk phase and pores in adiabatic conditions, where B is obtained by ΔTτi=ΔTeq ¼1�exp �τi= τRCBð Þ½ �.
(A, D, G) n¼ 2, 5, 10,15, 20f g, (B, E, H) H=L¼ 0:1, 0:2, 0:5, 1, 2f g, and (C, F, I) κL¼ 50, 100, 200, 500,1000f g. The default values of these
parameters are n¼4, H=L¼1, and κL¼100 unless adjusting one of them

HUANG ET AL. 12 of 15

 15475905, 2022, 10, D
ow

nloaded from
 https://aiche.onlinelibrary.w

iley.com
/doi/10.1002/aic.17790 by Z

hejiang U
niversity, W

iley O
nline L

ibrary on [09/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



on ΔTeq. Therefore, in the upper (white) parts of Figure 8, the influ-

ences of structural parameters on ΔT=ΔTeq at τ1, τ2, and τ3 (i.e., ΔTτi)

are plotted, which are dimensionless temperature rise at the end of

stage1, stage2, and stage3, respectively. Notably, the temperature

rises at the end of stage4 are the adiabatic temperature rise at equilib-

rium ΔTeq. The results show that ΔT=ΔTeq at τ2 are near 0.7 for any n,

H=L, and κL except for the cases when τg=τt !1 or τg=τt <1. Besides,

ΔTτ3=ΔTeq ≠1 indicates that temperature has not reached equilib-

rium in the end of stage3 and stage4 controlled by HT is significant

for the cases, as shown in the upper part of Figure 8G.

The formulas for directly fitting ΔT=ΔTeq and structural parame-

ters are complicated. In addition, for the same structural parameters,

the fitting formulas under different τi is not same. Inspired by

Equation (4) describing the temperature rise only caused by HG, we

assume ΔT=ΔTeq at τ1, τ2, and τ3 satisfy the formula:

ΔTτi

ΔTeq
¼1�exp �1

B
τi
τRC

� �
, ð26Þ

B¼� τi
τRC

� ln 1� ΔTτi

ΔTeq

� �� ��1

, ð27Þ

where B is a correction factor and i¼ 1, 2, 3f g. The changes of B with

n, H=L, and κL are shown in the lower (gray) parts of every subfigure

in Figure 8. Interestingly, the value of B with the same structural

parameter under different τ is similar. For example, the slope of all

fitted lines between n and B under different τi approaches 1. This

interesting phenomenon demonstrates B is less affected by τi, but

more by structural parameters. Since τg=τt !1 and even τg=τt <1 for

κL¼ 500, 1000f g, the curves of B in the center of the bulk phase and

pores cannot be overlapped, as shown in Figure 8F.

The contribution degree of temperature rises during every stage

on total temperature rise CDΔT=ΔTeq
is defined as:

CDstage1
ΔT=ΔTeq

¼ΔTτ1=ΔTeq,

CDstage2
ΔT=ΔTeq

¼ ΔTτ2 �ΔTτ1ð Þ=ΔTeq,

CDstage3
ΔT=ΔTeq

¼ ΔTτ3 �ΔTτ2ð Þ=ΔTeq,

CDstage4
ΔT=ΔTeq

¼1�ΔTτ3=ΔTeq:

ð28Þ

According to Equations (20)–(27), the formulas of CDΔT=ΔTeq
of every

stage can be easily obtained. The CDΔT=ΔTeq
in the center of bulk

phase at different n, H=L, and κL are shown in Figure S6. Generally,

temperature rise during stage1 and stage4 make the largest and

smallest contributions on ΔTeq in the center of the bulk phase,

respectively.

3.6 | The influence of heat dissipation
on thermal effect

Because supercapacitors typically operate under heat dissipation in

practical applications, we also study relaxation times and temperature

rise at different intensity of heat dissipation (d≠0) in Section S5.

The numerical results of heat dissipation still show four stages during

temperature variation and HT is replaced by heat dissipation at stage3

and stage4. What's more, three relaxation times and maximum

temperature rise decrease with the increase of heat dissipation

intensity d.

4 | CONCLUSION

In summary, we systematically studied the thermal effect in the super-

capacitors with porous electrodes by the one-dimension stack-

electrode model. The analytical solution from the ECM, and the

numerical simulations from the PNP and heat equations are combined,

to derive the formulas of three relaxation times of temperature rise

(i.e., τ1, τ2, and τ3) for different structural parameters and operating

conditions. According to the three relaxation times, the temperature

rise process can be divided into four stages: HG controlled by the bulk

phase (stage1), HG controlled by the bulk phase and pores together

(stage2), HG as well as HT together (stage3), and HT (stage4). Further-

more, the structure–property relationships of adiabatic temperature

rise at equilibrium ΔTeq, and temperature rise at the end of every

stage ΔTτi are obtained by modifying analytical solutions. The ratio of

them ΔTτi=ΔTeq is examined to compare the contribution of HG and

HT on temperature rise. Therefore, we can use these simple formulas

with clear physical meanings to evaluate the influence of structural

parameters and operating conditions, especially the intensity of heat

dissipation on thermal effect: (1) when (and how long) every stage of

temperature rise starts (and lasts); (2) what mechanism causes temper-

ature rise of every stage (i.e., HG or HT in the bulk phase or pores);

and (3) how important the temperature rise of every stage ΔTτi con-

tributes to ΔTeq. Finally, an intelligent thermal management system

can be rationally designed to reduce the temperature rise by different

methods during different stages based on these formulas. Therefore,

this work may provide theoretical guidance for the design of thermal

management system of supercapacitors, even other energy storage

devices.

In the future, more structural parameters of electrodes, such as

pore-size distribution and micropores,21 should be considered in the

stack-electrode model to achieve more realistic materials simulations.

Besides, reversible heat, which has a great influence on the thermal

effect in pores, should be also considered.17,45
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