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Dynamic NOx emission prediction based on composite models adapt
to different operating conditions of coal-fired utility boilers
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Abstract
An accurate NOx concentration prediction model plays an important role in low NOx emission control in power stations.
Predicting NOx in advance is of great significance in satisfying stringent environmental policies. This study aims to accurately
predict the NOx emission concentration at the outlet of boilers on different operating conditions to support the DeNOx procedure.
Through mutual information analysis, suitable features are selected to build models. Long short-term memory (LSTM) models
are utilized to predict NOx concentration at the boiler’s outlet from selected input features and exhibit power in fitting multivar-
iable coupling, nonlinear, and large time-delay systems. Moreover, a composite LSTM model composed of models on different
operating conditions, like steady-state and transient-state condition, is prosed. Results of one whole day of typical operating data
show that the accuracy of the NOx concentration and fluctuation trend prediction based on this composite model is superior to that
using a single LSTM model and other non-time-sequence models. The root mean square error (RMSE) and R2 of the composite
LSTM model are 3.53 mg/m3 and 0.89, respectively, which are better than those of a single LSTM (i.e., 5.50 mg/m3 and 0.78,
respectively).
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Introduction

Coal accounts for approximately 94% of China’s detected
fossil energy reserves, and the energy consumption structure
dominated by coal is difficult to fundamentally change within
a short period. In 2017, China’s total energy consumption was
4.49 billion tons of standard coal, with coal consumption

accounting for 60.4% of the total energy consumption
(China 2018). 83.7%, 63.8%, and 80.1% of the SO2, NOx,
and particle matter (PM) countrywide, respectively, came
from thermal power, steel, and other major energy consuming
industries, causing serious air pollution (Liu 2015) and threat-
ening human health. This situation increases the demand for
coal fired power plants to decrease pollutant emissions.
Circulation fluidized bed (CFB) technology has the advan-
tages of lower NOx and SO2 emissions than other widely used
combustion processes because of the relatively low bed tem-
perature (ca. 800–900 °C) (Cheng et al. 2020; Tourunen et al.
2009; Koornneef et al. 2007; Basu and Prabir 2006; Weng
et al. 2019). In 2019, CFB boilers were responsible for 12%
capacity of thermal power plants, which have reached 100,000
MW(Song et al. 2015). Thus, developing the DeNOx technol-
ogy of CFB boilers has great significance.

Currently, increasingly stringent and detailed NOx emis-
sion limit policies are being set up by governments worldwide
for environmental considerations. To meet the rigorous emis-
sion standard, most CFB boilers have employed selective cat-
alytic reduction (SCR) or selective non-catalytic reduction
(SNCR) technology or both to reduce the NOx concentration
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before emission. The key step of these control technologies is
determining the amount of reducing agent to use through the
NOx concentration at the spray nozzles. The accurate moni-
toring of the NOx concentration in a timely manner currently
faces two main difficulties: the variations in boilers’ load lead
to dramatic NOx emissions fluctuation and increase the diffi-
culty of NOx measurement; and the other difficulty results
from the delayed measurement of the continuous emission
monitoring system (CEMS), which is usually used by power
plants for monitoring gas concentrations because of its long
heat tracing air extraction pipeline and high-temperature and -
dust working environment (Liu 2019).

To address the fast load variation and delayed measure-
ment issues, many researchers have conducted research of
developing an accurate method of predicting the NOx concen-
tration at the boiler outlet. Currently, studies can be mainly
divided into two in terms of approach. (1) The first group of
studies propose the use of the algorithm based on NOx pro-
duction and coal combustion mechanism, which usually pre-
dicts NOx emission using numerical simulation methods
(Gungor 2009). G. Lo1ffler et al. (Löffler et al. 2005) studied
reducing NOx emissions from natural gas burners using com-
putational fluid dynamics (CFD) method. In the research of
W. J. Sun et al. (Sun et al. 2016), a three-dimensional numer-
ical simulation was carried out to investigate the effect of
secondary air, OFA (over-fire air), and AA (additional air)
on NOx emissions and reported that the NOx concentration is
consistent with the measured NOx concentration.
Furthermore, J. Q. Ji et al. (Ji et al. 2020) used a two-
dimensional comprehensive CFD combustion model based
on the NOx and N2O conversion processes and other mecha-
nisms to predict NOx/N2O emissions and achieved good pre-
diction accuracy. However, numerical simulation methods are
unsuitable in the real-time production environment of a power
plant. (2) The second group proposes the use of a data-driven
method based on machine learning approaches, such as sup-
port vector machine (SVM) and artificial neural networks
(ANNs), which is a popular global research direction. The
SVM method using nonlinear kernel functions can be
strengthened in fitting nonlinear parameters, and some works
have been conducted by scholars in Refs.(Ahmed et al.
2015; Tan et al. 2016; Fan et al. 2019; Zhai et al. 2020;
Zheng et al. 2008). You Lv et al. (2012) built a non-
linear PLS integrated with LSSVM model to predict
NOx emissions and achieved a root mean square error
(RMSE) of 37.6609 mg/m3 on the test data. ANNs also
have excellent capabilities in fitting a nonlinear system
(Kalogirou 2003; Zhou et al. 2004; Ilamathi et al.
2013). However, these studies are mainly focused on
steady-state conditions while ignoring the transient-state
conditions in plant operation. In the transient-state, the
model must fit the time sequence data and solve the
problem of varying transient-state conditions.

With the development of the data management systems in
modern power plants, like the supervisory information system
(SIS)(Hong et al. 2020), the information in historical operat-
ing data on boilers is increasing and should be utilized for
improving operations. One of the big obstacles of utilizing
the information is the different time lags between parameters.
For example, the fluctuation of coal feeder rate may be much
earlier than the change of outlet NOx concentration. The re-
current neural network (RNN) is a new algorithm that can
accommodate consecutive time steps of several parameters
(Bengio et al. 1994; Qureshi et al. 2017). To solve the problem
of vanishing/exploding gradient in traditional RNN, long
short-term memory (LSTM) neural networks, which are capa-
ble of dealing with long time-sequential data, were invented
(Hochreiter and Schmidhuber 1997). P. Tan et al. (2019) used
LSTM neural network to predict the NOx concentration at a
boiler’s outlet, and the least RMSE on the test data is 12.2 mg/
m3, which is more accurate than over the 22 mg/m3 using the
SVM method. F. Hong et al. (2020) built a bed temperature
sequence interval prediction model for a typical 300-MW
CFB unit using the neural network and realized advanced
overtemperature warning. P. R. Xie et al. (2020) researched
on the NOx prediction model using a bi-directional LSTM
neural network with an attention mechanism, and the mean
absolute percentage error was 3.9%. D. Adams et al. (2020)
predicted the SOx and NOx emissions from a coal-fired CFB
boilers with deep neural network (DNN) and LSSVM algo-
rithms and researched on the influence of properties of coal
and limestone on SOx and NOx emissions, achieving a coef-
ficient of efficiency of 0.8925 and 0.9904 for the predictions
of SOx and NOx, respectively.

Previous research adopted different methods of predicting
NOx concentration at the boiler’s outlet to provide strong sup-
port for reducing NOx emission. However, the operating con-
ditions of boilers change frequently, and the changes are dif-
ficult to fit using one universal model. In this manuscript,
historical operating data from one CFB unit is studied and
divided into different parts according to their operating condi-
tions, like steady-state and transient-state conditions. The
LSTM model is separately built to fit the different character-
istics of data at different operating conditions, and fast and
accurate prediction models compatible with varied changing
operating conditions are finally acquired.

Method

CFB boiler structure and data acquisition method

A commercial 220 t/h CFB boiler is selected as the study
object. This boiler has a stable coal procurement channel,
and the coal quality change factors are ignored in this study.
Coal powders ground by in a coal mill and limestone are
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mixed together and burned in the boiler. Coal powders with
different densities suspend at different heights in the furnace,
held by the primary air supplied from the bottom of the bed
(Basu 1999). The coal powders that are not burnt are split by
the two cyclones at the furnace outlet. Two secondary air
nozzles are installed at two sides of the furnace wall, supply-
ing air to complete the combustion. Thermodynamic design
parameters of this CFB boiler are listed in Table 1.

Mainly due to the tight space and cost control, the SNCR
and SCR combined DeNOx technology is adopted by this
CFB unit. One CEMS is installed at the boiler’s outlet after
cyclones to monitor the NOx and O2 concentrations, where the
concentration of PM and the temperature of flue gas are both
high. In this situation, the CEMS must reversely blow every
2 h to prevent the pumping line from being blocked. During
the blowing periods, the measured NOx concentration drops
immediately and presents a huge deviation from the real NOx

concentration, bringing difficulties to NOx emissions control
and requiring auxiliary means of NOx concentration measure-
ment. Other parameters, such as temperature, flow rate, and
pressure, are measured by various meters at different posi-
tions, as shown in detail in Figure 1.

All operating data of the thermal plant is stored in the
databases of the plant information (PI) system with an interval
of 1 s. The raw measured data contains high-frequency noise
and takes a long time to reflect the change trend of the boiler.
Thus, the moving average method is used to resample the
operating data from 1 to 5 s of interval. Furthermore, we fetch
two months of operating data from the PI system, that is,
approximately 1 million sets of data, as the training data,
and 17280 sets data of one day that can represent typical
operating conditions as the validation data.

LSTM neural network

The most significant difference between traditional ANN and
RNN is that RNN can restore the information of sequential
data using the internal state (memory), making RNN more
powerful than traditional ANN for fitting sequence inputs.
As illustrated in Figure 2 (a), one RNN neuron contains not

only the current input but also the previous output. This RNN
characteristic indicates the capability of fitting sequence data.
Formula (1) shows the computing process:

ht ¼ σ Wixt þWcct−1

þ b

0
BBB@

1
CCCA ð1Þ

where ht represents the output of the hidden RNN neuron at
moment t; ct − 1 is the output of the hidden RNN neuron at
moment t − 1; xt is the input vector at moment t; Wi is the
weight matrix connecting the inputs and the hidden RNN
neuron; Wc is the weight matrix connecting two hidden
RNN neurons at two near moments; σ is the activation func-
tion, which is often the tanh function; and b is the bias vector.

However, the traditional RNN faces gradient vanishing or
exploding problems. To overcome these problems, the LSTM
neural network was proposed by Hochreiter and Schmidhuber
(1997), adding three logical memory gates to control the read-
ing, writing, and forgetting operations of each cell. The struc-
ture of the LSTM neural network is shown in Figure 2(b) and
explained by Formulas (2)-(6) as follows:

The input gate : it ¼ σ Wixt þ Uiht−1 þ Vict−1 þ bið Þ ð2Þ
The forget gate : f t

¼ σ W f xt þ U f ht−1 þ V f ct−1 þ bf
� � ð3Þ

Neuron output : ct ¼ f t⨂ct−1

þ it⨂tanh Wcxt þ Ucht−1 þ bcð Þ ð4Þ
The output gate : ot ¼ σ Woxt þ Uoht−1 þ Voct þ boð Þ ð5Þ
Output : ht ¼ ot⨂tanh ctð Þ ð6Þ

where ht represents the hidden state of the LSTM cell at
moment t; ct is the cell state of the LSTM cell at moment t; xt is
the input vector at moment t;Wi,Wf,Wc,Wo are weights of the
input gate, forget gate, cell output and output gate respective-
ly; σ is the activation function, which is often the tanh(x)
function; and b is the bias vector; ⨂ represents convolution
between two matrixes.

Features selection

To build accurate models, irrelevant features must be aban-
doned (Safdarnejad et al. 2019). The variables in Figure 1
must be optimized to reduce the network’s training time and
decrease the dimensions of the input variables, which facili-
tates the training. Mutual information (MI) is a statistic meth-
od that can measure the amount of mutual information be-
tween two random features (Yin et al. 2017). The MI factor

Table 1 Thermodynamic design parameters of the studied CFB boiler

Parameters Design value

Boiler maximum continuous rating 220 t/h

High superheated steam temperature 540 °C

High superheated steam pressure 13.7 MPa

Low superheated steam temperature 450 °C

Feedwater temperature 242 °C

Feedwater pressure 19.2 MPa

Coal feeder rate of design quality 25.9 t/h
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ranges from 0 to 1, and the higher the MI factor is, the closer
relationship between two features is. Formula (7) defines the
mutual information between variables x and y, where p(x, y) is
the joint distribution of x and y; p(x) and p(y) are the marginal
distributions.

I x; yð Þ ¼ ∑
xϵX

∑
yϵY

p x; yð Þlog p x; yð Þ
p xð Þp yð Þ ð7Þ

With several inputs, joint MI is needed and defined as
follows:

I x1; x2;…; xn; yð Þ

¼ ∑
xϵX

∑
yϵY

p x1; x2;…; xn; yð Þlog p x1; x2;…; xn; yð Þ
p x1; x2;…; xnð Þp yð Þ ð8Þ

where x1, x2,…, xn are the random variables to be selected,
and y is the target variable, which is the NOx emission
concentration. F. Wang et al. (2018) used joint MI with the
mRMR evaluation criterion (Peng et al. 2005) and the

backward elimination algorithm (Guyon and Elisseeff 2003)
to calculate the joint MI between the inputs and the NOx emis-
sions and deleted the moisture in coal. In this study, we cal-
culate the MI between features and the NOx concentrations,
and the results are shown in Table 2.

In Table 2, the furnace pressure, flue gas pressure at fur-
nace outlet, and the main steam pressure have the least MI and
are deleted from the input features. The remaining 23 features
are selected as the training features.

Delays between features

Along the flue gas flowing path in the boilers, meters are
distributed to monitor features, such as the gas temperature,
and the gas pressure. However, these features have a time
sequence, and the delays between features must be determined
before building the models. This paper adopts wavelet trans-
form to find the delays between features.
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Fig. 1 Schematic and measured parameters of the CFB boiler

Fig. 2 Structures of one RNN cell
(a) and LSTM cell (b)
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Wavelet transform is a method of decomposing a signal
into a family of wavelet transform functions, which can finally
describe the signal (Hao 2010). Through this method, the sig-
nal component of the data due to the fluctuation of the instru-
ment itself can be removed, and the delay relationship be-
tween signals can be investigated from different scales. As
shown in Figure 3 (a), for the raw data from the PI system,
the original signal is decomposed into four different frequency
band components by wavelet transform, and then the signal
deviation value based on the same frequency band is found.
Figure 3(b) is the 4th component in the family of wavelets.
The minimum point of the three lines marked by “x” is the
inflection point of the raw data. Thus, we can determine the
delay between the secondary air flow rate, the O2 concentra-
tion, and the NOx concentration. The rest of the delays be-
tween features are determined by the same method, and the
results are listed in Table 3.

Model hypermeters

Three hyperparameters, namely, the prediction time step, the
look-back time step, and the numbers of nodes of the hidden
layers, must be determined to build a suitable LSTM model.

The prediction time step is directly decided by the time lag
of the CEMS. The blowing signal of the CEMS of the boiler
and the NOx concentration at the furnace outlet are recorded,
and the history data of these two are compared to decide on the
prediction time step, as shown in Figure 4. In the picture, the
red line representing the CEMS blowing signal ends at the
78th second. If the CEMS is on time, the NOx concentration
should immediately increase after the blowing ending.
However, the concentration increases at the 150th second.
The 72-s gap between these two moments is the time lag of
the CEMS and the prediction time step that must be covered.
Given 5 s of data sampling interval, the prediction time step is
set to 14.

The look-back time step is another LSTM hypermeter and
represents the completeness of the historical information
(Yang et al. 2020). Finally, the look-back time step is deter-
mined as 30.

To adapt the strong nonlinearity characteristic of CFB
boilers, two LSTM hidden layers are selected to fit the vari-
ables. The numbers of nodes of the two LSTM layers also
affect the prediction performance. The particle swarm optimi-
zation (PSO) algorithm is utilized here to improve the network
structure. The improvement process can be summarized in the
following four steps:

(1) Initialize the velocity and location of 40 particles with
two dimensions L and N and set the location range ran-
domly from 2 to 30 (nodes number = particle value * 20).

(2) Fit the models using the Adam algorithm with history
data and calculate the fitness function.

Table 2 MI between input
variables and NOx concentration Parameter name Identifier Unit MI

Coal feeder rate i1, i2, i3, i4 t/h 0.53

Primary air flow rate i5, i6 m3/h 0.36

Secondary air flow rate i7, i8 m3/h 0.60

Furnace bed temperature i9, i10, i11, i12, i13, i14,

i15, i16, i17, i18

°C 0.57

Furnace pressure i19 Pa 0.16

Flue gas temperature i20, i21 °C 0.68

Flue gas pressure i22, i23, i24, i25 Pa 0.06

Main steam flow rate i26 t/h 0.69

Main steam pressure i27 MPa 0.15

NOx mass concentration at the boiler’s outlet i28 mg/m3 1.00

O2 volume concentration at the boiler’s outlet i29 % 0.80

Table 3 Delays between features determined by wavelet transform

Features Delay time (s)

Coal feeder rate 120

Primary air flow rate 105

Secondary air flow rate 105

Furnace bed temperature 95

Flue gas temperature 80

Main steam flow rate 70

O2 volume concentration 70

NOx mass concentration 0
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(3) Update the velocity and location of each particle using
the Formulas (9) and (10), global best position Pi, and
local best position Pg. Here, ω is 0.8, and c1 and c2 are 2.

Vkþ1
id ¼ ωVk

id þ c1r1 Pk
id−X

k
id

� �þ c2r2 Pk
gd−X

k
id

� �
ð9Þ

X kþ1
id ¼ X k

id þ Vkþ1
id ð10Þ

(4) Repeat steps (2)–(3) until the number of iterations ex-
ceeds 50.

The other hypermeters are set as follows. To avoid
overfitting, two dropout layers are separately set after each
LSTM layer, and the drop factor is 0.5 according to previous

research (Srivastava et al. 2014). The learning rate is set to
0.00166. The optimization process goes through many rounds
of iterative and it may take a long time if models are tested on
whole dataset. Therefore, data of the first ten days is chosen as
the sample in the optimization process. The complete optimi-
zation process is depicted in Figure 5. The result of each iter-
ation of PSO improvement is shown in Figure 6, and the best
network structure includes two hidden LSTM layers with 220
and 440 nodes. The minimum RMSE on test data is 7.24 mg/
m3, and the result on data of ten days may differ from that on
whole sample data.

To nondimensionalize the input features in training the
models, standardization is commonly employed in the prepro-
cessing of history data as Formula (11):

-4

-3

-2

-1

0

1

2

3

4

5

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

t = 35 s 
t = 70 s

Secondary air flow 
O2 concentration

NOx concentration

0 50 100 150 200 250 300 350
]1[/noitazidradnats

retfa
ata

D N
O

x
co

nc
en

tr
at

io
n/

[m
g/

m
3 ]

Samples/[1 s]
(a) (b)

Fig. 3 Determination on delays between features by 4-layer wavelets transformation

150 s

78 s
0

1

0

20

40

60

80

100

120

C
E

M
S 

bl
ow

in
g 

si
gn

al
/[1

]

N
O

x
g

m[/noitartnecnoc
/m

3 ]

Samples/[1 s] 

72 s

NOx concentration
CEMS blowing signal

0      20      40      60     80     100    120    140   160    180   200    220

Fig. 4 Determination on
prediction time step by analyzing
time lag between CEMS blowing
signal and NOx concentration rise

13546 Environ Sci Pollut Res (2022) 29:13541–13554



x* ¼ x−μ
σ

ð11Þ

As mentioned, the NOx concentration is measured by the
CEMS at the boiler outlet where the particle concentration is
near 200 g/m3. Thus, the CEMS must blow frequently. To
remove the effect of fake measured NOx concentration during
blowing, the history data of NOx concentration should be
preprocessed. First, the variance sliding window moves along
the history data of NOx concentration to mark the start point of
blowing, and then linear interpolation is used to process the
data during blowing as Formula (12):

bxi ¼ xstart þ xend−xstart
end−startð Þ ð12Þ

where start represents the start time point of blowing, and
end represents the end time point of blowing. x refers to the
concentration of NOx emission.

Model performance index

For the evaluation of the NOx emissions prediction perfor-
mance of the models, two indexes, namely, RMSE, and R
squared (R2), are introduced. The two indexes are defined
using the following equations:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
∑n

i¼1 byi−yi� �2
;

r
ð13Þ

R2 ¼ 1−
∑n

i¼1 byi−yi� �2

∑n
i¼1 y−yið Þ2 ; ð14Þ

where yi is the measured value by the CEMS, byi is the
predicted value, and y is the average value of the measured
values of the samples.
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Results and discussion

DNNs, the random forest, and a LSTM network are compared
in terms of their ability to deal with time sequence data and
discussed in Section 3.1. In Section 3.2, the composite LSTM
neural networks with intelligent data segmentation based on
fuzzy c-means clustering is explored to fit the accuracy of
prediction when units operate on transient-state condition.

LSTM model compared with other models

For a meaningful comparison, the DNN also has two hidden
layers, and each with 220 and 440 nodes, like the LSTM
network with the best performance. Random forest is a bag-
ging ensemble algorithm, which has 200 estimators in this
study. The prediction results of the LSTM network, the
DNN, and random forest are shown in Figure 7 and Table 4.

The RMSEs of the LSTM, the DNN, and the random forest
in the training data are 2.54, 11.61, and 6.90 mg/m3, respec-
tively, and 7.95, 17.11, and 17.06 mg/m3 in the test data.
Therefore, under the same network structure, the one single
LSTM neural network exhibits better performance in follow-
ing and forecasting sequence data than the DNN and random
forest. Furthermore, the blue line enclosed by the orange
dashed box in Figure 7 is a section of horizontal line, which
means that the CEMS blowing period and the measured value

are not real. However, the LSTM prediction results still reflect
the NOx concentration value, unaffected by the blowing signal
protection, and in some way solve the problem that NOx can-
not be measured during the blowing period.

However, the prediction result of one single LSTM one test
data, especially samples 2200–2400 in Figure 7, is not accu-
rate enough. The maximum error of estimated NOx concen-
tration and measured NOx concentration during this section
reaches 25 mg/m3. It proves that there is still plenty of scope
for improvement of the prediction models. On this condition,
we study the composite LSTM models and the models are
discussed in the next section.

Composite LSTM model on different operating
conditions

The previous section proves that the LSTM network is stron-
ger at coping with sequence data than the DNN and the ran-
dom forest models. However, when the unit load fluctuates
frequently, the network sometimes reacts slowly. Given this
difficulty, we studied typically historical operating data seg-
mentation based on the fuzzy c-means clustering algorithm
and build composite LSTM model including LSTM model
fitting well on certain operating condition to enable the global
prediction model better compatible with various operating
conditions.

Table 4 Prediction results of
LSTM, DNN, and random forest
on two-hour training data and
two-hour test data

LSTM DNN Random forest

Training data Test data Training data Test data Training data Test data

RMSE 2.54 7.95 11.61 17.11 6.90 17.06

R2 0.98 0.87 0.61 0.40 0.84 0.40
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Fig. 7 Prediction results of one
single LSTM, DNN, and random
forests
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The operating conditions of a boiler can be divided into two
major kinds, namely, steady-state and transient-state operating
conditions. The flow chart of building composite LSTMmod-
el and related methods are shown in Figure 8.

CEMS blowing condition

During CEMS blowing, the NOx concentration measured by
the CEMS is deviated from true value. To avoid the fault
information been stored in database, the plant operators com-
pulsively turn fluctuated curve of boiler’s outlet NOx

concentration into a straight line during CEMS blowing.
That means the standard deviation (SD) of measured NOx
concentration during CEMS blowing is much lower than nor-
mal operating conditions. Therefore, a SD sliding window is
utilized to monitor whether the sample data of NOx concen-
tration is lower than usual to identify condition during CEMS
blowing. Because NOx concentration data during CEMS
blowing is fictitious measured value, operating data during
CEMS blowing is abandoned from modeling.
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Fig. 8 Main steps of building composite model for predicting NOx concentration at boiler’s outlet
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Steady-state condition

First, steady-state operating conditions are intercepted from
two months of data based on the CPK method. This method
is used in the industry to represent the ability of keeping pro-
cess stable measured by the mean and standard derivation of
data. Here, we define that coal feeder rate, total air, and main
steam pressure of the boiler keeps continually between [mean
− 1.5 * Std., mean + 1.5 * Std.] at least 2 h as one section of
steady-state operating condition. The steady-state condition
LSTM model is trained using steady-state operating data,
and the prediction result on the test data is shown in
Figure 9. The RMSE is 4.86 mg/m3, and R2 is 0.82.

Transient-state condition

The rest of the data, apart from the data in the blowing period,
is all under the dynamic operating condition. The coal feeder
rate and the total wind amount are commonly known as fun-
damental primary factors that represent the conditions of
boilers and the influence NOx emissions. The coal feeder rate
determines the thermal load of boilers, which finally

determines the unit and heat loads of boilers. Furthermore,
the coal feeder rate and total air amount versus total coal
feeder rate, defined as air-coal ratio, together determine the
NOx variation. For example, when the unit must increase the
load, operators usually increase the primary and secondary air
flow rate first before the coal feeder rate, which increases the
air-coal ratio. Consequently, the NOx concentration also in-
creases immediately. Thus, we select the coal feeder rate and
air-coal ratio as the criterion of data clustering. The kernel
density estimation and the fuzzy c-means clustering algorithm
are adopted, and the main procedure is presented as follows:

1) The outer layer divides the data into several sections
based on the kernel density estimation, which is used to
determine the typical operation points of the coal feeder
rate from several loads with the maximum probability. P.
Emanuel et al. (Parzen 1962) provided the detailed meth-
od and result of kernel density estimation using the
Gaussian kernel function, as shown in Figure 10. When
the coal feeder rate equals 12.1, 18.0, and 26.0 t/h, the
density reaches the regional maximum and thus divides
the training data into three sections.

2) The inner layer works further on each data group di-
vided by the outer layer and then divides each group
into different parts based on the cosine distance of the
air-coal ratio of every data batch using the fuzzy c-
means clustering method. Fuzzy c-means is an unsu-
pervised clustering method, which can automatically
find the cluster center on a certain number of clusters.
Here, the cluster index is cosine similarity, and the
cluster accuracy valuation index is silhouette coeffi-
cient (Sc), which are expressed as follows:

S ið Þ ¼ b ið Þ−a ið Þ
max a; bð Þ ; ð15Þ

Scos xi; x j
� � ¼ ∑n

q¼1 xiq � xjq
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

q¼1 xiq
� �2q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

q¼1 xjq
� �2q ; ð16Þ

where S(i) is the silhouette coefficient of one sample, a(i) is
the similarity of one sample with the other samples in the same
cluster, and b(i) is the similarity of one sample with the other
samples in different clusters. The range of S(i) is [-1, 1], and
the nearer S(i) is to 1, the better the cluster performance will
be. Scos(xi, xj) is the cosine similarity of two samples.

The cluster results are shown in Figure 11, and the average
of silhouette coefficient on different numbers of clusters is
provided in Table 5. In Figure 11, the horizontal axis marks
three different coal feeder rate conditions, and the difference
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Fig. 10 Distribution of total coal feeder rate based on kernel density
estimation

Table 5 The silhouette coefficient of each cluster

Silhouette coefficient Coal feeder rate

12.1 t/h 18 t/h 26 t/h

Air coal ratio

2 clusters 0.722 0.767 0.744

3 clusters 0.811 0.812 0.736

4 clusters 0.705 0.685 0.423

5 clusters 0.66 0.689 0.385
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in fuel means different boiler operating loads. Thus, the
bed temperature and the base line of the NOx concen-
tration are different. Then, the vertical axis marks dif-
ferent numbers of clusters by fuzzy c-means. The bolder
blue line in each picture represents the cluster center
line, which has the maximum cosine similarity with
the lines in each picture. Moreover, in every condition
of clustering, the gradient of the air-coal ratio line is the
clustering index, such as increasing sharply, increasing
slowly, stable, decreasing slowly, and decreasing sharp-
ly. Each picture represents one kind of boiler operating
condition.

After data cluster preprocessing, the data in different
parts are trained in different LSTM networks with the
same structure. One-hour validation data of transient-state
conditions are used to validate the prediction performance
of LSTM network models with cluster preprocessing. The
RMSE of each model is shown in Table 6. When the
main steam flow rate changes sharply, the prediction per-
formance of the NOx concentration is proven good. The
average RMSE and R2 in the training data are 1.60 mg/m3

and 0.99, and 3.53 mg/m3 and 0.89 in test data,
respectively.

Tested on all operating conditions

Finally, the steady-state and transient-state condition models
are tested in one whole day of continuous validation data
covering typical operating conditions, to test the prediction
performance of the composite LSTM model. The model se-
lection process at a certain time is the same as the data seg-
mentation and model training process shown in Figure 8. That
is, one section of data must be judged by the CPK method to
determine whether the operating conditions are steady-state or
transient-state. If the conditions are on steady-state, the
Euclidian distance of the coal feeder rate from 12.1, 18, and
26 t/h must be calculated and then compared with the cosine
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Fig. 11 Clustering results based on two layers fuzzy c-means clustering method. Blue boxes represent the clustering numbers

Table 6 Performance of transient-state condition LSTM models for
NOx prediction validated on one-hour validation data

RMSE (mg/m3) Coal feeder rate clusters

12.1 t/h 18 t/h 26 t/h

Air-coal ratio clusters

Cluster I 2.32 1.25 2.09

Cluster II 2.13 1.82 2.01

Cluster III 2.10 2.34 /

13551Environ Sci Pollut Res (2022) 29:13541–13554



similarity of each cluster center. Afterward, the most suitable
model is selected from the LSTM models and used to predict
the NOx concentration. As depicted in Figure 12 (top), the
different background color at each time represents the operat-
ing condition identified by the composite models.
Figure 12(bottom) shows the detailed prediction performance,
and the model can predict in advance and with high accuracy,
proving the ability of built composite LSTMmodels to fit well
in a long period and in different operating conditions. Table 7
shows the results of different predictive models researched in
this manuscript, and it proves the composite LSTM model
have better ability to fit different operating conditions.

Conclusion

In this manuscript, the structure of hidden layers of LSTM
model is optimized by PSO algorithm. Then, the optimized
LSTM model is built to compare with DNN and random for-
ests models, proving that the LSTM network is better in fitting
sequence data than the other two models. However, the accu-
racy is not good enough when the load changes in a wide range
and cannot quickly reach the load regulation demand of modern
power plants. Thus, the composite LSTM model with data clus-
tering preprocessing is researched. The two-layer cluster method
divides data into several parts according to the coal feeder and
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Fig. 12 NOx prediction with
composite LSTM model on
different types of operating
conditions

Table 7 RMSE and R2 of
prediction of different models Composite LSTM LSTM DNN Random forest

Training
data

Test
data

Training
data

Test
data

Training
data

Test
data

Training
data

Test
data

RMSE 1.60 3.53 2.54 7.95 11.61 17.11 6.90 17.06

R2 0.99 0.89 0.98 0.87 0.61 0.40 0.84 0.40
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air-coal ratio change rates. The data after segmentation is used to
train the composite LSTM models, and it exhibits better perfor-
mance than LSTM without data preprocessing, as well as the
DNN and the random forest models.
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