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Abstract: A large number of aromatic substances can be found in so-called coal tar (containing
>10,000 individual compounds), which is a mixture of heavy liquid fractions (dense viscous black
liquor, tended to solidification) obtained after the pyrolysis of coal (solid product—coke, gas products,
and light liquid products are also produced during the process). Volatile monocyclic aromatic
hydrocarbons, which are naturally occurring in coal tar, can be exploited as premium raw materials
for the production of graphene by chemical vapor deposition (CVD). Moreover, aromatic chemicals
(compounds with benzene rings) can produce graphene at lower temperatures than other small-
molecule gas feedstocks (for graphene growth via methane gas, the temperature must be at least
900 ◦C). The intermediate reaction mechanism involved in the creation of graphene from various
temperature ranges of monocyclic aromatic hydrocarbons in benzene ring structures has long been a
fascinating enigma. Accordingly, in this paper, we analyze the graphene growth pattern of benzene
at different temperatures from 300 to 900 ◦C. For graphene synthesis in the lower temperature range
(300~600 ◦C), analytical experiments show that benzene rings (almost) do not crack during the gas
phase process. Thus, the structure of the benzene ring is directly coupled into graphene in the above
temperature range. When benzene is more thoroughly transformed into tiny molecules that are
deposited on the surface of copper foil at higher temperatures (700~900 ◦C), graphene is formed
by a complex mixture of carbon sources, including gaseous small molecules (methane and ethane)
and benzene. Based on the process above, we provide an alternative solution for the large-scale
industrial preparation of graphene, with low energy consumption, via low-temperature synthesis of
graphene by the CVD method using the coal tar carbon source at 500 ◦C, which is the optimal growth
temperature of the benzene ring.

Keywords: coal tar; benzene; low-temperature graphene growth; mechanism

1. Introduction

Graphene, a two-dimensional sp2 hybridization carbon nanomaterial with a honey-
comb lattice structure [1], has attracted the attention of many scientists due to its powerful
optical [2], electrical [3], and mechanical [4] properties. Breakthroughs have been made in
graphene preparation methods with graphene-intensive studies [5]. The main graphene
preparation methods are mechanical exfoliation [6], chemical exfoliation [7], SiC epitaxial
growth [8], redox [9], chemical vapor deposition [10], and the fast Joule heat method [11].
The “top-down” exfoliation method is obviously straightforward and dependable, but it
is constrained by the unmanageable number of layers and the small size of the graphene
flakes used for practical applications. The high quality, good consistency, and adjustable
number of layers offered by the chemical vapor deposition method for producing graphene
make it ideal for large-scale industrial manufacturing of the material [12]. Unfortunately,
the carbon precursors required for chemical vapor deposition are often relatively expensive
small-molecule gases such as methane and acetylene [13,14]. Of course, other hydrocar-
bons, such as polymers (e.g., PMMA) [15] and liquids (e.g., alcohols and benzene) [15,16],
are also used as carbon sources for the CVD growth of graphene. These carbon sources
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are also not available for large-scale graphene production due to their high preparation
costs. Finding affordable and accessible alternative carbon sources has been the subject of
current efforts to produce graphene films on a wide scale (industrially) using CVD [17,18].
Even while biomass and food waste have the capacity to generate graphene at a low cost
as well [19,20], their unique sources could result in ecological imbalance if employed in
significant amounts. Coal, which has been discovered to be inexpensive and plentiful, can
also be utilized as a substitute for the carbon precursors needed to produce graphene and
is a possible supply of carbon for the sustainable, affordable fabrication of graphene films.

However, due to the complex composition of coal, the different content of alkyl chains
and heteroatoms contained in different coals can seriously affect the quality of graphene
synthesized from coal [21,22]. The separation of coal into aromatic ring-rich components by
certain means plays a role in promoting graphene growth [23]. Coal-based poly-generation
technology at Zhejiang University converts coal from a single power generation to the
simultaneous production of electricity, gas, and liquid fuels [24]. The key to this technology
is the release of volatile fractions such as H2, CO, CO2, and hydrocarbons from coal under
a high-temperature inert atmosphere. The solid products are continuously aromatized
in their molten states to form semi-coke or coke. The liquid components of the volatile
fraction are condensed to form coal tar, in which aromatic hydrocarbon compounds account
for more than 85% of the tar (Table 1). The natural volatilization of coal tar produced by
using coal poly-generation produces mostly structurally symmetrical monocyclic aromatic
hydrocarbons, which is an effective way to separate symmetrical aromatic compounds
from coal in a clean and economical manner. Highly symmetric aromatic compounds are
the raw material for clean and low-energy consumption-producing graphene, allowing the
more efficient synthesis of higher-quality graphene and reducing defects in the graphene
lattice. So, the monocyclic aromatic compounds isolated from coal tar are promising for
higher-quality CVD synthesis of graphene. This is attributed to the fact that the aromatic
component of coal is an effective unit for the synthesis of high-quality graphene, while
the heteroatoms in coal as well as aliphatic chain hydrocarbons are responsible for the
defects in the graphene lattice [25]. Moreover, aromatic compounds, including benzene,
toluene, and polystyrene [15,26,27], are able to synthesize graphene at lower temperatures
than small molecule gas carbon sources, such as methane and ethane [12,28]. Therefore,
the benzene ring structure in the carbon source must play an important role in graphene
synthesis.

Table 1. Chemical composition of coal tar produced by poly-generation.

Coal Tar Components Content (%)

Phenols 2.52
Chain hydrocarbons 0.32
Cyclic hydrocarbons 0.57

Monocyclic aromatic hydrocarbons 13.51
Polycyclic aromatic hydrocarbons 71.72

Other oxygenated compounds 8.12
Nitrogen-containing compounds 1.68
Oxygen and nitrogen compounds 0.69
Nitrogenous sulfur compounds 0.19
Metal-containing compounds 0.69

It is obvious that the growth mechanism of graphene is influenced by growth con-
ditions (temperature, pressure, time, and the composition of the carbon source in CVD
reactors). The mechanism of benzene growth nucleation has received little attention, the
basic structure of aromatic carbon source, which is critical to the optimization of graphene
synthesis conditions, economics, and the environment using this carbon source including
coal tar. It is, therefore, necessary to study the reaction principles of the CVD synthesis
process of benzene rings at different temperatures in order to gain insight into the growth
mechanism of benzene rings and even graphene films derived from coal tar.
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On this basis, the main objective of this paper is to study the synthesis principle
of graphene with benzene rings at different temperatures and to select the appropriate
temperature for the preparation of high-quality graphene films from coal tar. First, we will
predict the benzene ring-derived graphene growth model through gas chromatography
(analyze the reaction process at different temperatures) and Raman spectroscopy (analyze
the surface state of graphene films). Then with coal tar as raw material, we will prepare
the carbon material on the surface of copper foil by the same method under the optimal
conditions of temperature. The above-synthesized carbon material of coal tar will be
detected as graphene according to the common graphene characterization means, such as
the Raman test, scanning electron microscopy, and spherical difference electron microscopy,
which proves that coal tar is an effective raw material for the preparation of graphene with
low-energy consumption and low costs.

2. Materials and Methods
2.1. Materials

The coal tar used for our experiments was produced from Chinese Shanxi Gemeng
coal through pyrolysis in a 1MW double circulating-fluidized-bed (CFB) experimental
platform and detected by a laboratory gas chromatography–mass spectrometry system
(GCMS, Agilent 7890-5977B) for coal tar components. The composition of the coal tar was
analyzed as shown in the following Table 1.

Copper foil (99.8%, thickness 0.025 mm) obtained from Alfa Aesar was used as a
substrate for graphene synthesis. For characterization, silicon oxide wafers (oxide layer
thickness of 300 nm) were used as substrates to transfer graphene films. Ultrathin pure
carbon film with no formvar backing on lacey carbon support film was used for spherical
aberration-corrected transmission electron microscopy. Moreover, 1L gas sample bags were
purchased for collecting gas components during growth.

2.2. Graphene Synthesis

Graphene was synthesized by a low-pressure chemical vapor deposition method (see
experimental equipment in Figure S1): copper foil (2 × 2 cm2) was placed in the center of
a quartz tube and heated by a horizontal tube furnace. The carbon precursors, including
benzene and coal tar, are contained in a homemade vessel that is isolated from the main
system by a valve. During furnace heating, a low-pressure environment of about 50 Pa is
maintained in the system and a flow rate of 12 sccm of high-purity hydrogen (99.999%) is
introduced to anneal at 1000 ◦C for 30 min. After annealing, the furnace temperature is
cooled to the reaction temperature (300~900 ◦C). The carbon source valve is opened and the
carbon-containing vapor (benzene, coal tar) is introduced into the quartz tube at a certain
flow rate, and the flow rate of high-purity hydrogen is reduced to 4 sccm for graphene
growth for 30 min. After the growth is completed, the carbon source valve is closed and
the equipment is naturally cooled to room temperature under hydrogen purge. Details of
graphene low-temperature growth experiments are shown in Figure S2.

2.3. Reaction Gas and Liquids Collection

The released gas is collected in a gas sampling bag attached to the tube furnace exhaust.
Prior to pyrolysis, the sampling bags are purged three separate times with hydrogen gas to
remove excess air from the sampling bags.

2.4. Characterization

For analysis of the content of the small molecular components of the gas during
graphene growth, a gas chromatograph (customized by Agilent Technologies, Ltd., Santa
Clara, CA, USA, with a flame ionization detector for detection of low carbon hydrocarbons)
was used. The field emission scanning electron microscope (SEM: SU-8010) observes the
morphology characteristics of coal tar graphene; a confocal Raman spectrometer with an
optical microscope (produced by Horiba Jobin Yvo, type LabRAM HR Evolution) was used
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to analyze the surface state of benzene rings growing graphene at different temperatures;
a spherical aberration-corrected transmission electron microscope (Titan ChemiSTEM,
accelerating voltage: 0~200 KV; highest resolution: 0.08 nm) was used to observe the
nano-level lattice structure of the coal-tar graphene surface.

3. Results and Discussion
3.1. Mechanism of Graphene Growth by Benzene at Different Temperatures

We are aware that the heteroatoms and aliphatic chains found in coal cause flaws in the
graphene lattice, making it difficult to create layers of pure graphene. On the other hand,
producing high-grade graphene from structurally symmetric aromatic ring-structured
molecules is successful. Liu et al. [29] suggested that petroleum pitch structural units for a
large number of aromatic ring structures play an important role in graphene generation:
The bitumen will separate the functional groups in the aromatic ring structure by hydrogen
etching as well as metal surface catalysis at 400 ◦C; when the temperature reaches 600 ◦C,
the aromatic rings begin to polymerize, and graphene is produced at 940 ◦C.

The above explanation, however, is not sufficient to account for the role of the phenyl
meta structure in the aromatic ring in graphene growth. No attempt has been made to
even explore the reaction mechanism of the benzene ring in graphene growth at different
temperatures. Moreover, the basic theoretical aspects of the growth process, particularly
the benzene ring in polycrystalline graphene films synthesized on metals at different
temperatures, as well as the choice of the fundamental supply units [30] for graphene
nucleation in the gas phase reaction process and in the surface reactivity, are still under
study despite the fact that the fundamental principles of graphene formation by CVD have
been established. Therefore, we used gas chromatography to analyze the gas mixture of
the graphene production reactor. The results are shown in Table 2.

Table 2. Content of gas molecules in the benzene thermal reaction.

T (◦C) CH4 C2H4 C2H6 C3H8 C3H6

300 3.2 × 10−3 * 1.2 × 10−4 3.4 × 10−3 2.8 × 10−4 5.5 × 10−4

400 5.7 × 10−4 2.9 × 10−5 9.9 × 10−4 1.4 × 10−4 3.4 × 10−4

500 8.4 × 10−4 3.6 × 10−5 1.6 × 10−3 1.1 × 10−4 2.7 × 10−4

600 2.3 × 10−3 5.5 × 10−5 4.2 × 10−3 7.1 × 10−5 2.0 × 10−4

700 1.5 × 10−1 7.8 × 10−3 2.5 × 10−1 4.2 × 10−4 9.6 × 10−4

800 1.6 × 10−1 4.7 × 10−3 5.0 × 10−1 4.8 × 10−5 2.0 × 10−4

900 4.8 × 10−1 3.2 × 10−3 8.7 × 10−1 0 1.1 × 10−4

* Gas content unit %.

Although small molecule gases, such as methane, ethane, propane, and propylene
are produced in trace amounts at low temperatures (300~600 ◦C), at higher temperatures
(700~900 ◦C), methane and ethane contents rise with the temperature, while the contents of
other gases stay at the original levels. According to the aforementioned findings, between
3.5 and 11.7% of benzene undergoes a ring-opening reaction [31] that is accelerated by
copper foil at higher temperatures between 700 and 900 ◦C (Figure 1). It is unclear, though,
whether benzene rings serve as the only carbon source for the formation of graphene at
various temperatures.

In fact, the benzene ring structure of the macromolecule has been present in the
gas phase reaction studies of graphene CVD growth and may play an important role.
Lewis et al. [32] simulated the species composition of the gas phase under 100 Pa low-
pressure graphene growth conditions and found that in addition to the small molecules of
gas containing (C1~C3), larger molecules containing benzene are produced. If we consider
the process of graphene synthesis by CVD of benzene as a chemical vapor deposition of
pyro carbon [33], A. BECKER et al. [34] found that benzene is able to produce pyro carbon
directly without other intermediates in the process of thermal carbon deposition. This
finding further suggests that benzene is the most significant intermediate in gas phase
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reactions of CVD graphene growth and the most active hydrocarbon in the pyrolysis
of carbon.
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Figure 1. Analysis of the main gas components of graphene growth environment.

In addition, benzene rings [15,35] as carbon sources have repeatedly been shown to
generate graphene via CVD at a low temperature (300~600 ◦C). Moreover, experiments
have shown that in the composition of the gas phase in this interval, almost no breakage of
the benzene ring to form small molecules occurred. The small number of small molecules of
gas produced by the benzene ring in Table 2 at lower temperatures (300~600 ◦C), although
only at the ppm level under hydrogen atmosphere, causes these small molecules of gas to be
difficult to ignore because graphene is a nanomaterial and the number of atoms of carbon
required for synthesis is very small. For this reason, we passed ppm levels of alkanes
(C1~C3) in the experimental reactor and found that no graphene was produced under
low-temperature (300~600 ◦C) conditions. So, we believe that graphene was synthesized
mainly from benzene as the basic unit, and Figure 2 proposes a conjecture of the process
of the benzene ring forming graphene on the surface of copper substrates in the reaction
temperature interval of 300~600 ◦C.
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Figure 2. Mechanism of graphene growth from benzene at different temperatures (300~900 ◦C).

In the above analysis, together with graphene synthesis by the benzene ring at a low
temperature, the benzene ring must dehydrogenate on the surface of copper foil under a
hydrogen atmosphere to synthesize graphene in a gas phase reaction (shown in Figure 3).
Then, as shown in Figure 4, the benzene dehydrogenated and adsorbed on the surface
of the copper foil eventually forms graphene through migration and nucleation. That is,
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graphene is synthesized by the benzene ring through dehydrogenation and migrating to a
certain position as the basic supply unit of graphene to arrange (graphene arrangement
synthesis process in video S1).
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Figure 4. Surface reaction of graphene growth from benzene at low temperatures (300~600 ◦C).

More research is needed to determine whether the six-membered benzene ring serves
as the basic supply unit of graphene at low temperatures. This is because it is unknown
whether the fundamental constituents of graphene islands produced on a specific substrate
are mostly carbon monomers or other bigger carbon species. It has been demonstrated
that carbon dimers [36] are the main supply units for the formation of graphene islands on
metal substrates, and larger forms of carbon supply units, such as trimers, are as stable as
dimers on the copper surface, only with higher formation potentials. This suggests that if
the substrate surface is enriched with a large number of benzene rings rather than cleaved
into other substances at a certain reaction temperature, it also has the possibility that the
hexameric carbon after benzene dehydrogenation is directly used as the basic supply unit
for graphene growth.

The presence of a significant number of gaseous small molecules in the benzene ring
opening reaction causes the graphene growth process to change in the higher temperature
range of 700~900 ◦C, in contrast to the gas phase composition of graphene generated at
300~600 ◦C. We synthesized graphene on the surface of copper foil using low-pressure
chemical deposition at higher reaction temperatures of 700 to 900 ◦C with benzene as
the carbon precursor and hydrogen as the carrier gas. The samples at each temperature
were transferred to silicon oxide wafers for Raman analysis. The test results are shown in
Figure 5. The intensity of the D-peak of graphene increases significantly when the growth
temperature reaches 800 ◦C in the case of graphene produced via benzene ring deposition
at 700 and 900 ◦C. The intensity of the D peak was much higher than that of the G peak,
which is compatible with the formation of ethane [28] at 750 ◦C. The height of the 2D
peak decreased, but its shape did not change as much as that of multilayer graphene with
more than three layers. According to previous experimental results, benzene at 800 ◦C is
calculated to have about 5.8% ring-opening cleavage conversion to gaseous carbon sources
containing ethane. Therefore, these gaseous small molecules, especially ethane, are more
involved in the synthesis of graphene on copper foil and migrate to synthesize graphene as
smaller carbon units (e.g., carbon–carbon dimers).
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The above results indicate that the different forms of benzene ring existence at different
temperatures are the key to understanding the benzene ring growth of graphene. We believe
that at the graphene growth temperature below 600 ◦C, benzene ring growth is dominated
by the direct arrangement of benzene rings due to almost no reaction; the increase of
temperature above 700 ◦C prompts the cleavage of benzene rings, and the small molecule
gas products of cleavage also participate in the process of benzene ring growth, which
makes the growth process more complicated; when the temperature is greater than 800 ◦C,
with the increase of gas small molecules, gas molecules such as ethane gas participate in
the growth process more than other carbon sources.

3.2. Synthesis of Graphene from Coal Tar at 500 ◦C

The poly-generation coal tar is a favorable starting point for the low-temperature
growth of graphene because it contains a lot of aromatic hydrocarbons. However, the
temperature of coal tar pitch-derived graphene is always above 900 ◦C [37]. As a result,
more of the aromatic ring structure from coal will be destroyed and more tiny gas molecules
will be deposited as graphene. Therefore, we attempted to produce graphene from all
the volatile coal tar components containing molecules with phenyl meta-structures at
low temperatures.

We first tried to deposit graphene on the surface of copper foil using benzene as
the carbon source in order to determine the ideal conditions for the low-temperature
development of graphene from coal tar. As shown in Figure 6, the Raman spectrum of
graphene grown by benzene in the temperature range of 300~600 ◦C is shown. In the
following, we choose the ideal working conditions for the low-temperature development of
benzene using the parameters of each graphene peak from the Raman spectrum. Graphene’s
primary Raman peaks are known to be G, D, and 2D, and the peak integration ratio,
peak intensity, peak position, and peak shape of these distinguishing peaks can reveal
information about the properties of the material [38]. The predominant in-plane vibration
induced by sp2-linked carbon atoms produces the G peak (1580 cm−1), which is indicative of
the graphitic characteristics of the materials. The D peak (1350 cm−1) depicts the disorder
and flaws in the lattice of sp2-hybridized graphene, such as point defects, subdomain
borders, etc. The integrated intensity ratio ID/IG of the D and G peaks is widely used to
characterize the number of defects in graphitic materials [39]. The D peak’s second-order
overtone is the 2D peak (2700 cm−1). Many people use a single, sharp second-order Raman
band (2D) as a quick and reliable way to demonstrate the presence of monolayer graphene.
The ratio of the integrated intensities of the 2D and G peaks (I2D /IG) and the number of
layers of graphene are inversely related by the double resonance mechanism [40].
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Figure 6. Raman spectrums of benzene-grown graphene at 300~600 ◦C.

After comparing peak indicators with temperature in the Raman spectra (Figure 7) of
benzene related to graphene at various temperatures (300~600 ◦C), the layers and defects of
graphene can be observed. The D-band and G-band integrated intensity ratio ID/IG = 0.44
at 500 ◦C is lower than that of the graphene developed at other temperatures, indicating
that this temperature has the fewest flaws in graphene. Further evidence that the graphene
produced at 500 ◦C is the thinnest is provided by the integrated intensity ratio of the 2D
and G bands at this temperature, which is a minimum of 1.4. According to all available
data, 500 ◦C is the ideal temperature for the low-temperature growth of graphene by
benzene under identical operating conditions, both in terms of the number of defects and
the thickness of graphene.
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Figure 7. Property index of graphene by benzene grown at each growth temperature.

In a follow-up to the previous research, 500 ◦C was selected as the optimal working
temperature for the low-temperature synthesis of graphene by benzene. Graphene was
then formed by CVD using coal tar as the carbon source at the same temperature. Under
the same process flow of growing graphene with benzene as the carbon source, monocyclic
aromatic hydrocarbons volatilized from coal tar were successfully deposited on the surface
of copper foil at 500 ◦C to form surface carbon material. Subsequently, we determined the
surface carbon material to be graphene by Raman and electron microscopy.

The Raman results of graphene from coal tar obtained are shown in Figure 8a. Among
these, the 2D peak structure of graphene made from coal tar is obviously changed in this
circumstance. Although the shape and intensity of the 2D peaks of graphene also change
significantly compared with those of bulk graphite, the shape of 2D Raman peaks varies



Processes 2023, 11, 593 9 of 11

with the number of graphene layers [41]. The 2D peak broadens with random orientation
between graphene layers relative to monolayer graphene when excited by various Raman
lasers, which causes the 2D characteristic peak to broaden. Bulk graphite, for example,
is made up of two components, 2D1 and 2D2, which are about 1/4 and 1/2 the height of
the G peak, respectively [42]. Likewise, the varied line forms of the 2D peaks of graphene
offer an efficient technique to count the number of graphene layers [43]. The number
of 4 layers of this graphene can be determined using the peak line form by fitting the
2D peak to the Lorentz peak in Figure 8a. Graphene has a rectangular regular lattice
structure [27], as illustrated by scanning electron microscopy (Figure 8b), and an obvious
graphene honeycomb carbon arrangement structure can be seen in some areas observed
by a spherical aberration-corrected transmission electron microscope. In a word, coal tar
can synthesize graphene under 500 ◦C without destroying the benzene ring structure,
providing a cheap carbon source option for graphene growth at low temperatures.
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Figure 8. Characterization of graphene grown from coal tar at 500 ◦C: (a) Raman spectrum of
graphene grown by coal tar at 500 ◦C (the upper right corner is the result of the fit of the Lorentz
splitting of the 2D peak in the spectrum); (b) SEM of graphene grown by coal tar at 500 ◦C (the upper
right corner is Graphene lattice image under spherical aberration microscope).

4. Conclusions

The benzene ring was used as an example of an aromatic ring structure in this paper
to examine the mechanism of growing graphene at low temperatures. We found that at
low temperatures (300~600 ◦C), the benzene rings almost do not undergo cleavage in the
gas phase reaction, but instead are deposited as complete six-membered ring structures
on the surface of copper foil. So, we have good grounds to believe that the basic supply
unit for graphene deposition is a carbon-6 phenyl ring. The benzene ring begins to break
down into little molecules (primarily CH4 and C2H6) of gas only when the temperature
reaches 700 ◦C. As a natural outcome, the benzene ring structure was destroyed at high
temperatures (700~900 ◦C) before graphene formation began; small molecules of gas
produced by the thermal cleavage of benzene rings are also involved in the synthesis of
graphene. Furthermore, Raman spectroscopy shows that at 800 ◦C, ethane becomes the
primary carbon source for the formation of graphene on the surface of copper foil. Then
we proposed the scenario of using coal tar as a carbon source to achieve clean and low-
energy-consumption preparation of graphene and tried to grow the carbon material on the
surface of copper foil by the same process of growing graphene with benzene ring at 500 ◦C
(the best graphene synthesis condition of benzene ring). The presence of graphene was
also determined using characterization methods, such as Raman and spherical aberration-
corrected transmission electron microscope. The above results indicate that the clean and
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low-energy consumption production of a high-value-added graphene process from coal tar
is feasible.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/pr11020593/s1, Figure S1: Experimental equipment; Figure S2:
Details of graphene low-temperature growth experiments; Video S1: Schematic animation of the low-
temperature direct growth of graphene from benzene rings; Figure S3: Gas chromatogram examples
of benzene ring chemical vapor deposition on copper foil at different temperatures (300~900 ◦C);
Table S1: The type of coal tar composition compounds from Chinese Shanxi Gemeng coal through
pyrolysis in a 1 MW double circulating-fluidized-bed (CFB) experimental platform.
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