DOI: 10.13334/j.0258-8013.pcsee.210230 文章编号: 0258-8013 (2022) 01-0187-09 中图分类号: TK 16 文献标志码: A

# 工业烟气 SO3 吸收脱除性能研究

何柯佳, 唐祚洲, 宋蔷\*, 姚强

(清华大学能源与动力工程系, 北京市 海淀区 100089)

#### Performance of SO<sub>3</sub> Removal From Industrial Flue Gas by Adsorption

HE Kejia, TANG Zuozhou, SONG Qiang<sup>\*</sup>, YAO Qiang

(Department of Energy and Power Engineering, Tsinghua University, Haidian District, Beijing 100089, China)

ABSTRACT: The use of high-sulfur coal and selective catalytic reduction (SCR) reactor increases SO3 concentration in the flue gas. Numerical simulation was carried out to study the industrial process of SO3 removal from the flue gas by adsorbents such as Ca(OH)2 and Na2SO3. The influence of Ca(OH)<sub>2</sub>/Na<sub>2</sub>SO<sub>3</sub>:SO<sub>3</sub>, SO<sub>3</sub> concentrations and the cooling process of flue gas on SO<sub>3</sub> removal performance was discussed. The results showed that both two adsorbents could effectively remove SO<sub>3</sub>. During the cooling process of flue gas, once the adsorbents were injected into the flue gas, the SO3 removal efficiency and the conversion of the two adsorbents first quickly increased and then slowly increased. The performance of SO<sub>3</sub> removal by Na<sub>2</sub>SO<sub>3</sub> was much better than by Ca(OH)<sub>2</sub>. The increase of Ca(OH)<sub>2</sub>/Na<sub>2</sub>SO<sub>3</sub>:SO<sub>3</sub>, the SO<sub>3</sub> concentration of the original flue gas, and the temperature at the adsorbent-injection position promoted the SO<sub>3</sub> removal. The effect of increasing Ca(OH)2/Na2SO3:SO3 was the most significant, and the SO<sub>3</sub> removal efficiency could reach higher than 90%. Although the other components in the flue gas competitively reacted with the adsorbents, the selectivity of adsorbing  $SO_3$  by the adsorbents was about 0.9. However, the conversion of the adsorbents was low, which was around 10%.

**KEY WORDS:** SO<sub>3</sub>; Ca(OH)<sub>2</sub>; Na<sub>2</sub>SO<sub>3</sub>; flue gas; competitive model

摘要:燃用高硫煤和安装选择性催化还原(selective catalytic reduction, SCR)装置会引起烟气中 SO<sub>3</sub>浓度增加,带来设备腐蚀与环境污染问题。分别以 Ca(OH)<sub>2</sub>和 Na<sub>2</sub>SO<sub>3</sub>为吸收剂,通过数值模拟研究吸收剂脱除工业烟气中 SO<sub>3</sub>的性能,讨论 Ca(OH)<sub>2</sub>/Na<sub>2</sub>SO<sub>3</sub>:SO<sub>3</sub>、SO<sub>3</sub>浓度和降温历程对 SO<sub>3</sub>脱除的影响。结果表明,在 SCR 脱硝装置后加入 2 种吸收剂均能有

效脱除 SO<sub>3</sub>。在烟气降温过程中,加入吸收剂后,SO<sub>3</sub>的脱 除率和吸收剂总转化率均呈现初期快速增长、后期缓慢增长 的趋势。Na<sub>2</sub>SO<sub>3</sub> 对 SO<sub>3</sub> 的脱除性能明显优于 Ca(OH)<sub>2</sub>。 Ca(OH)<sub>2</sub>/Na<sub>2</sub>SO<sub>3</sub>:SO<sub>3</sub>增加、原始烟气 SO<sub>3</sub>浓度高、吸收剂加 入位置烟温高均可以提高 SO<sub>3</sub> 脱除率。其中增加 Ca(OH)<sub>2</sub>/Na<sub>2</sub>SO<sub>3</sub>:SO<sub>3</sub> 效果最为显著,SO<sub>3</sub> 脱除率为 90%以 上。虽有烟气中其他组分的竞争反应影响,吸收剂对吸收 SO<sub>3</sub>的选择性在 0.9 左右,但吸收剂的转化率较低,在 10% 左右。

关键词: SO<sub>3</sub>; Ca(OH)<sub>2</sub>; Na<sub>2</sub>SO<sub>3</sub>; 烟气; 竞争模型

#### 0 引言

煤炭是我国的基础能源。煤炭的高效清洁利用 是我国经济、环境稳定发展的重要保障。煤炭中含 有硫元素,在炉内高温燃烧时会生成硫氧化物。炉 内燃烧以及选择性催化还原(selective catalytic reduction, SCR)脱硝反应器催化剂对 SO<sub>2</sub>的催化氧 化,使得烟气中的硫氧化物约 2%为 SO<sub>3</sub><sup>[1]</sup>。燃用中 高硫煤时,烟气中的 SO<sub>3</sub>浓度可达到 100 mg/m<sup>3</sup>以 上。SO<sub>3</sub>浓度的增加会引起空气预热器、除尘器与 风机等设备的腐蚀<sup>[2-3]</sup>,排放到大气中后也会加剧雾 霾和酸沉降<sup>[4-7]</sup>。降低燃煤烟气中 SO<sub>3</sub>的浓度,对于 燃煤系统安全稳定运行和污染物控制有重要意义。

向烟气中喷吸收剂是一种有效的脱除 SO<sub>3</sub> 的方 法,目前已开展了一些实验室研究和工业试验。实 验室研究主要在 SO<sub>3</sub>+N<sub>2</sub> 的气氛下对 CaO、MgO、 ZnO、Ca(OH)<sub>2</sub>、Mg(OH)<sub>2</sub>、CaCO<sub>3</sub> 和 Na<sub>2</sub>CO<sub>3</sub>等碱 性吸收剂与 SO<sub>3</sub> 的反应性能开展了系列实验,研究 发现上述物质对 SO<sub>3</sub> 均有良好的脱除效果<sup>[8-13]</sup>。工 程试验<sup>[14]</sup>采用 NaHSO<sub>3</sub>/Na<sub>2</sub>SO<sub>3</sub> 作为吸收剂,通过 与 SO<sub>3</sub> 的置换反应脱除 SO<sub>3</sub>,也取得了比较好的效 果。另外何柯佳等研究指出烟气中存在的 SO<sub>2</sub> 会和

**基金项目**:国家自然科学基金项目(51976103);清华大学--中国华能 集团有限公司基础能源联合研究院项目(HNKJ20-H50)(U20YYJC03)。

The National Natural Science Foundation of China (51976103); Huaneng Group Science and Technology Research Project (HNKJ20-H50) (U20YYJC03).

碱性吸收剂发生酸碱反应, O<sub>2</sub> 会和亚硫酸盐发生氧 化反应,这些竞争反应会影响 SO<sub>3</sub> 脱除效率<sup>[15-16]</sup>。

工业试验中,吸收剂分别在炉内、SCR 与空预 器间或空预器与除尘器间加入<sup>[14, 17-20]</sup>。炉内喷吸收 剂可以脱除炉内燃烧生成的大部分 SO<sub>3</sub>,但无法解 决 SCR 催化氧化形成的 SO<sub>3</sub>,所以整体脱除效率不 高。在空预器与除尘器间喷吸收剂无法缓解空预器 腐蚀问题,另外这个区间的烟温较低,不利于吸收 反应的进行。综上所述,在 SCR 与空预器间喷吸收 剂控制 SO<sub>3</sub> 更为可行,可以达到脱除燃烧及 SCR 催化氧化生成的 SO<sub>3</sub>以及缓解空预器腐蚀的作用。

Martin Marietta 公司<sup>[14]</sup>在 SCR 后喷射特制的 MgO 吸收剂,烟气中 SO<sub>3</sub>浓度为 20~25r/min,Mg:S 物质的量比为 1~1.5:1 时,SO<sub>3</sub> 脱除率达到 65%。中国大唐集团科学研究院<sup>[17]</sup>在空预器入口喷射 Ca(OH)<sub>2</sub> 粉末,Ca:S 物质的量比为 4:1 时,SO<sub>3</sub> 脱除率约为 40%。美国 Codan 公司<sup>[14]</sup>在 SCR 反应器后喷 NaHSO<sub>3</sub>/Na<sub>2</sub>SO<sub>3</sub> 溶液,Na:S 物质的量比由 0.3:1 增加为 1:1 时,静电除尘器出口处 SO<sub>3</sub> 脱除率 由 52%增加至 90%左右,继续增加 Na:S 物质的量比至 1.8:1 时 SO<sub>3</sub> 脱除率增加至 95%。

目前报道的工业试验证明了喷吸收剂脱除烟 气中 SO<sub>3</sub>的可行性,但缺乏系统的研究,并且工业 试验结果中 SO<sub>3</sub>的脱除率与实验室研究存在比较大 的差异,明显偏高,这可能是由于上述工业试验中 测量 SO<sub>3</sub>浓度采用的是控制冷凝法(EPA Method 8A),在应用于含吸收剂的烟气环境时,吸收剂在 采样管内滤膜上过滤形成的沉积层对采样烟气中 的 SO<sub>3</sub>产生二次吸收,造成 SO<sub>3</sub>浓度测量值偏低, 因而计算得到的 SO<sub>3</sub>脱除率会偏高。

碱性吸收剂与亚硫酸盐用于脱除工业烟气 SO<sub>3</sub>,缺乏系统的分析。本文以 Ca(OH)<sub>2</sub>和 Na<sub>2</sub>SO<sub>3</sub> 颗粒分别代表上述 2 类吸收剂,研究其在 SCR 反应 器出口喷入烟气后脱除 SO<sub>3</sub>的过程。基于作者前期 建立的吸收剂分别与烟气中 SO<sub>3</sub>/SO<sub>2</sub>、SO<sub>3</sub>/O<sub>2</sub>的竞 争反应模型<sup>[21]</sup>,采用经过优化的吸收剂颗粒结构参 数,对不同吸收剂用量、SO<sub>3</sub> 浓度和烟气降温历程 下吸收剂颗粒吸收烟气中 SO<sub>3</sub> 的过程开展数值模 拟,分析了 2 种吸收剂脱 SO<sub>3</sub> 的动态过程,讨论了 上述工况参数对 SO<sub>3</sub> 脱除率、吸收剂转化率以及吸 收 SO<sub>3</sub> 选择性的影响,为喷吸收剂脱除工业烟气 SO<sub>3</sub> 的过程设计和优化提供指导。

#### 1 模型及计算方法

1.1 吸收剂颗粒与 SO<sub>3</sub>/SO<sub>2</sub>、SO<sub>3</sub>/O<sub>2</sub> 的竞争反应 模型

将 Ca(OH)<sub>2</sub> 和 Na<sub>2</sub>SO<sub>3</sub> 颗粒简化为球形多孔颗 粒,两者分别与 SO<sub>3</sub>和 SO<sub>2</sub>、SO<sub>3</sub>和 O<sub>2</sub>发生的反应 过程如下。反应初期,多孔颗粒的内外表面都是新 鲜的。反应气体 SO<sub>3</sub>和 SO<sub>2</sub>/O<sub>2</sub>,直接在颗粒外表面 反应,或者向颗粒内孔扩散的过程中在颗粒内表面 发生反应。随着反应的进行,颗粒表面形成反应产 物,反应产物逐渐完全覆盖吸收剂颗粒表面。反应 产物完全覆盖吸收剂颗粒表面后,SO<sub>3</sub>和 SO<sub>2</sub>/O<sub>2</sub>, 需要经历内孔扩散和产物层扩散才能与未反应的 吸收剂发生反应。

作者将产物岛生长反应模式与晶粒模型<sup>[22-23]</sup> 相结合,建立了2种吸收剂颗粒竞争吸收SO<sub>3</sub>的反 应模型<sup>[21]</sup>为:

$$\frac{\partial x_{\rm SO_3}(R,t)}{\partial t} = \frac{V}{1 - \varepsilon_0} \frac{1}{R^2} \frac{\partial}{\partial R} \left[ R^2 D_{\rm e,SO_3}(R,t) \frac{\partial C_{\rm SO_3}(R,t)}{\partial R} \right] \quad (1)$$

$$a \frac{\partial x_{\rm SO_2/O_2}(R,t)}{\partial t} = \frac{V}{1 - \varepsilon_0} \frac{1}{R^2} \frac{\partial}{\partial R} \times \left[ R^2 D_{\rm e,SO_2/O_2}(R,t) \frac{\partial C_{\rm SO_2/O_2}(R,t)}{\partial R} \right] \quad (2)$$

其边界条件为

$$\begin{cases} \frac{\partial C_{SO_3}(0,t)}{\partial R} = 0\\ C_{SO_3}(R_0,t) = C_{SO_3,S}\\ \frac{\partial C_{SO_2/O_2}(0,t)}{\partial R} = 0\\ C_{SO_2/O_2}(R_0,t) = C_{SO_2/O_2,S} \end{cases}$$
(3)

式中: t 为任一反应时刻; R 为吸收剂颗粒内任一位 置半径, m;  $R_0$  为颗粒半径, m;  $\varepsilon_0$  为颗粒初始孔 隙率;  $x_{SO_3}$ 、  $x_{SO_2/O_2}$  为吸收剂颗粒内任一半径 R 处晶 粒吸收 SO<sub>3</sub>、SO<sub>2</sub>/O<sub>2</sub> 的局部转化率;  $D_{e,SO_3}$ 、  $D_{e,SO_2/O_2}$ 为 SO<sub>3</sub> 和 SO<sub>2</sub>/O<sub>2</sub> 在颗粒孔隙内的有效扩散系数, m<sup>2</sup>/s; V 为吸收剂的物质的量体积, m<sup>3</sup>/mol;  $C_{SO_3}$ 、  $C_{SO_2/O_2}$ 为颗粒孔隙内的 SO<sub>3</sub> 和 SO<sub>2</sub>/O<sub>2</sub> 浓度, mol/m<sup>3</sup>;  $C_{SO_3S}$ 、 $C_{SO_2/O_2S}$ 为颗粒外表面的 SO<sub>3</sub> 和 SO<sub>2</sub>/O<sub>2</sub> 浓度, mol/m<sup>3</sup>; 反应气体为 SO<sub>2</sub> 时, a=1; 反应气体为 O<sub>2</sub> 时, a=0.5。

颗粒内任一半径 R 处晶粒与 SO<sub>3</sub>和 SO<sub>2</sub>/O<sub>2</sub>的 反应,由未被产物层覆盖的晶粒表面反应与 SO<sub>3</sub>和 SO<sub>2</sub>/O<sub>2</sub> 通过产物层扩散与晶粒内的未反应核发生

的反应两部分组成。因而局部转化速率可以写成:

$$\frac{r_0^3}{3V_{\text{Ca(OH)}_2}} \frac{\partial x_{\text{SO}_3}(R,t)}{\partial t} = r_0^2 \left[ 1 - \theta(R,t) \right] k_{\text{SO}_3} \cdot C_{\text{SO}_3}(R,t) + r_2^2(R,t) \theta(R,t) k_{\text{SO}_3} C_{\text{SO}_3,r_2}(R,t)$$
(4)

$$a \frac{r_0^3}{3V} \frac{\partial x_{\text{SO}_2/\text{O}_2}(R,t)}{\partial t} = r_0^2 [1 - \theta(R,t)] k_{\text{SO}_2/\text{O}_2} \cdot C_{\text{SO}_2/\text{O}_2}(R,t) + r_2^2(R,t) \theta(R,t) k_{\text{SO}_2/\text{O}_2} C_{\text{SO}_2/\text{O}_2,r_2}(R,t)$$
(5)

式中: $k_{SO_3}$ 、 $k_{SO_2/O_2}$ 为吸收剂和 SO<sub>3</sub>和 SO<sub>2</sub>/O<sub>2</sub>的反应速率常数,m/s; $C_{SO_3, r_2}$ 和  $C_{SO_2/O_2, r_2}$ 为晶粒未反应核表面(半径  $r_2$ )SO<sub>3</sub>和 SO<sub>2</sub>/O<sub>2</sub>浓度,mol/m<sup>3</sup>。

任一半径 *R* 处,在晶粒表面未完全被产物层覆 盖、即覆盖度 *θ*(*R*,*t*)<1 时,覆盖度 *θ*随时间的变化可 用式(6)描述:

$$\frac{\partial \theta(R,t)}{\partial t} = \frac{V[1 - \theta(R,t)]}{r_0 - r_{2c}} \cdot [k_{SO_3}C_{SO_3}(R,t) + \frac{1}{a}k_{SO_2/O_2}C_{SO_2/O_2}(R,t)]$$
(6)

当 SO<sub>3</sub>和 SO<sub>2</sub>/O<sub>2</sub>接触晶粒的产物层外表面时, SO<sub>3</sub>和 SO<sub>2</sub>/O<sub>2</sub>通过产物层扩散到达晶粒未反应核处 进行反应, SO<sub>3</sub>和 SO<sub>2</sub>/O<sub>2</sub>的反应速率分别等于通过 晶粒产物层的 SO<sub>3</sub>和 SO<sub>2</sub>/O<sub>2</sub>的扩散速率。由此可以 确定任一半径 R处晶粒未反应核处 SO<sub>3</sub>和 SO<sub>2</sub>/O<sub>2</sub> 的浓度  $C_{SO_3,r_2}$ 和  $C_{SO_2/O_2,r_2}$ 为:

$$C_{\text{SO}_{3},r_{2}}(R,t) = \frac{D_{\text{p,SO}_{3}}C_{\text{SO}_{3}}(R,t)}{r_{2}^{2}(R,t)k_{\text{SO}_{3}}\frac{r_{1}(R,t) - r_{2}(R,t)}{r_{1}(R,t)r_{2}(R,t)} + D_{\text{p,SO}_{3}}}$$
(7)

$$C_{\text{SO}_{2}/\text{O}_{2},r_{2}}(R,t) = \frac{D_{\text{p},\text{SO}_{2}/\text{O}_{2}}C_{\text{SO}_{2}/\text{O}_{2}}(R,t)}{r_{2}^{2}(R,t)k_{\text{SO}_{2}/\text{O}_{2}}\frac{r_{1}(R,t) - r_{2}(R,t)}{r_{1}(R,t)r_{2}(R,t)} + D_{\text{p},\text{SO}_{2}/\text{O}_{2}}}$$
(8)

式中: $D_{p,SO_3}$ 、 $D_{p,SO_2/O_2}$ 为 SO<sub>3</sub>和 SO<sub>2</sub>/O<sub>2</sub>在晶粒产物 层中的扩散系数(包括气体扩散和离子扩散), $m^2/s$ 。

晶粒未反应核半径 r<sub>2</sub>的变化速率与晶粒的反应速率有关,由此得到任一半径 R 处 r<sub>2</sub>随反应时间变化的表达式:

$$-dr_{2}(R,t)/dt = \frac{Vk_{SO_{3}}(D_{p,SO_{3}} + D_{s})C_{SO_{3}}(R,t)}{r_{2}^{2}(R,t)k_{SO_{3}}\frac{r_{1}(R,t) - r_{2}(R,t)}{r_{1}(R,t)r_{2}(R,t)} + (D_{p,SO_{3}} + D_{s})} + \frac{1}{a}\frac{Vk_{SO_{2}/O_{2}}D_{p,SO_{2}/O_{2}}C_{SO_{2}/O_{2}}(R,t)}{r_{2}^{2}(R,t)k_{SO_{2}/O_{2}}\frac{r_{1}(R,t) - r_{2}(R,t)}{r_{1}(R,t)r_{2}(R,t)} + D_{p,SO_{2}/O_{2}}}$$
(9)

反应后的晶粒半径*r*<sub>1</sub>与未反应核半径*r*<sub>2</sub>之间的关系 满足:

$$r_1^3(R,t) = r_2^3(R,t) + [r_0^3 - r_2^3(R,t)] \frac{V_{\text{CaSO}_4/\text{Na}_2\text{SO}_4}}{V_{\text{Ca(OH)}_2/\text{Na}_2\text{SO}_3}} \quad (10)$$

以上方程相组合,可以完整地描述多孔吸收剂 颗粒与 SO<sub>3</sub>和 SO<sub>2</sub>/O<sub>2</sub>的反应过程。

吸收剂颗粒吸收 SO3 的总转化率 Xso3 为

$$X_{\rm SO_3}(t) = \frac{3}{R_0^3} \int_0^{R_0} R^2 x_{\rm SO_3}(R, t) dR$$
(11)

吸收剂颗粒吸收 SO<sub>2</sub>/O<sub>2</sub> 的总转化率 X<sub>SO<sub>2</sub>/O<sub>3</sub>:</sub>

$$X_{\text{SO}_{2}/\text{O}_{2}}(t) = \frac{3}{R_{0}^{3}} \int_{0}^{R_{0}} R^{2} x_{\text{SO}_{2}/\text{O}_{2}}(R, t) dR$$
(12)

#### 1.2 吸收剂脱除工业烟气 SO3的模型

吸收剂用于脱除工业烟气中 SO<sub>3</sub>时,需将一定 量的吸收剂颗粒加入燃煤烟气中,颗粒随烟气流动 的同时与 SO<sub>3</sub>和 SO<sub>2</sub>(或 O<sub>2</sub>)发生反应。工业烟气中 存在其他一些气体组分,可能会影响 SO<sub>3</sub>的吸收。 基于作者研究团队的前期研究,发现 CO<sub>2</sub>在中低温 区间与吸收剂的反应活性远低于 SO<sub>2</sub>,可忽略; SCR 脱硝运行时如氨逃逸符合设计标准,对应氨浓度低 于 2.3 mg/m<sup>3</sup>,则其与 SO<sub>3</sub>的反应可忽略;伴随吸 收剂对 SO<sub>3</sub>的吸收,SO<sub>3</sub>浓度持续下降,H<sub>2</sub>O 与 SO<sub>3</sub> 的二元凝结可忽略;因而在本文的模型中,仅考虑 了吸收剂与 SO<sub>3</sub>和 SO<sub>2</sub>(或 O<sub>2</sub>)的反应,其他烟气组 分的影响未计入。图 1 给出了吸收剂颗粒随烟气流 动过程的示意图,在分析这一过程中吸收剂对 SO<sub>3</sub> 的吸收时,做了如下简化:1)忽略烟气中其他组 分(CO<sub>2</sub>、NH<sub>3</sub>和 H<sub>2</sub>O)对吸收剂脱除 SO<sub>3</sub>的影响;



2) 忽略吸收剂颗粒加入烟气后颗粒与烟气的混合 过程,颗粒在烟气中均匀分布;3)烟气传质良好, 气体组分在流通截面均匀分布; 4)考虑到吸收剂 颗粒粒径小、随流性好,忽略颗粒与烟气的速度差 和温度差。吸收剂颗粒随烟气以速度 u 沿流向 z 运 动,其移动距离等于流速乘以流动时间。因而从加 入位置 z=0 流动到任一 z 位置时,颗粒与烟气接触 和反应的时间为 t,其所处环境温度为 z=ut 位置的 温度,而周围烟气的 SO3 和 SO2(或 O2)浓度因颗粒 吸收而减少,为对应着反应了 t 时间的烟气浓度。

因而随烟气流动了 t 时间的吸收剂颗粒吸收  $SO_3 和 SO_2/O_2$ 的转化速率与周围烟气的  $SO_3 和 SO_2/O_2$ O<sub>2</sub>的浓度变化速率有关系:

$$\frac{\mathrm{d}X_{\mathrm{SO}_3}(t)}{\mathrm{d}t} \cdot \frac{\rho \times v}{M} \cdot N = -\frac{\mathrm{d}C_{\mathrm{g},\mathrm{SO}_3}(t)}{\mathrm{d}t} \tag{13}$$

$$a\frac{\mathrm{d}X_{\mathrm{SO}_{2}/\mathrm{O}_{2}}(t)}{\mathrm{d}t}\cdot\frac{\rho\times\nu}{M}\cdot N = -\frac{\mathrm{d}C_{\mathrm{g},\mathrm{SO}_{2}/\mathrm{O}_{2}}(t)}{\mathrm{d}t} \qquad (14)$$

式中: $\rho$ 为吸收剂的密度, kg/m<sup>3</sup>; v 为单个吸收剂 的体积, m<sup>3</sup>); N 为烟气中吸收剂颗粒的数密度;  $1/m^3$ ; , M 为吸收剂的物质的量质量; kg/mol; C<sub>e,SO3</sub> 和 $C_{g,SO_2/O_2}$ 为烟气中反应气体 $SO_3$ 和 $SO_2/O_2$ 的浓度。

另外,吸收剂颗粒吸收 SO3 和 SO2/O2 的反应速 率也与主流烟气中的 SO3 和 SO2/O2 向颗粒表面扩 散通量相等:

 $\frac{\mathrm{d}X_{\mathrm{SO}_{3}}(t)}{\mathrm{d}t} \cdot \frac{m}{M} = A_{\mathrm{p}}h_{\mathrm{D}-\mathrm{SO}_{3}} \cdot [C_{\mathrm{g},\mathrm{SO}_{3}}(t) - C_{\mathrm{SO}_{3},\mathrm{b}}(R_{0},t)] \quad (15)$  $a\frac{\mathrm{d}X_{\mathrm{SO}_2/\mathrm{O}_2}(t)}{\mathrm{d}t}\cdot\frac{m}{M} = A_{\mathrm{p}}h_{\mathrm{D}-\mathrm{SO}_2/\mathrm{O}_2}\cdot$  $[C_{g,SO_{2}/O_{2}}(t) - C_{SO_{2}/O_{2},b}(R_{0},t)] \quad (16)$ 

式中: h<sub>D-SO3</sub>、h<sub>D-SO2</sub>为反应气体 SO3 和 SO2/O2 的 传质系数; m/s; C<sub>SO3,b</sub>、C<sub>SO5/O3,b</sub>为颗粒表面的 SO3 和 SO<sub>2</sub>/O<sub>2</sub>浓度, mol/m<sup>3</sup>;  $A_p$  为颗粒表面积; m<sup>2</sup>; m 为吸收剂的消耗质量, kg。

### 1.3 吸收剂脱除工业燃煤烟气 SO<sub>3</sub> 的模型参数的 选取方法及计算方法

反应气体 SO<sub>3</sub> 和 SO<sub>2</sub>/O<sub>2</sub> 的传质系数  $h_{\text{D-SO3}}$ 、 *h*<sub>D-SO<sub>2</sub>/O<sub>2</sub>(m/s)计算方法为</sub>

$$h_{\rm D} = Sh \frac{D_{\rm m}}{d_{\rm p}} \tag{17}$$

式中: Sh 为反应气体 SO3、SO2 或 O2 的舍伍德 (Sherwood)数,忽略颗粒与烟气间的相对速度时, Sh 值取为  $2^{[10]}$ 。 $D_m$ 为反应气体 SO<sub>3</sub>、SO<sub>2</sub>或 O<sub>2</sub>的 分子扩散系数, d<sub>p</sub>为吸收剂颗粒的直径。

基于竞争吸收固定床实验数据[21],对2类吸收 剂竞争吸收 SO3 的反应模型进行反应动力学分析, 获得了吸收剂颗粒竞争吸收 SO3 和 SO2/O2 反应模 型中的必要参数,具体参数取值见表1和表2。

表1 Ca(OH)2 与 SO3/SO2 竞争反应模型中待定参数的取值 
 Table 1
 Value of undetermined parameters in the
 competitive reaction model of Ca(OH)2 and SO3/SO2

| 温度/℃ | $k_{SO_2}/(m/s)$      | $D_{\rm p,SO_2}/({\rm m^2/s})$ | <i>k</i> <sub>SO3</sub> /(m/s) | $D_{\rm p,SO_2}/({\rm m^2/s})$ |
|------|-----------------------|--------------------------------|--------------------------------|--------------------------------|
| 200  | $7.51 \times 10^{-7}$ | 2.30×10 <sup>-21</sup>         | $4.14 \times 10^{-3}$          | $1.50 \times 10^{-16}$         |
| 250  | $2.25 \times 10^{-6}$ | $2.11 \times 10^{-20}$         | $8.92 \times 10^{-3}$          | $7.21 \times 10^{-16}$         |
| 300  | 6.76×10 <sup>-6</sup> | $1.91 \times 10^{-19}$         | $2.32 \times 10^{-2}$          | $2.25 \times 10^{-15}$         |
| 350  | $1.94 \times 10^{-5}$ | $1.59 \times 10^{-18}$         | 4.95×10 <sup>-2</sup>          | 5.62×10 <sup>-15</sup>         |

表 2 Na<sub>2</sub>SO<sub>3</sub>与 SO<sub>3</sub>/O<sub>2</sub>竞争反应模型中待定参数的取值 
 Table 2
 Value of undetermined parameters in the

| competitive reaction | model | of Na <sub>2</sub> SO <sub>3</sub> | and SO <sub>3</sub> /O |
|----------------------|-------|------------------------------------|------------------------|
|----------------------|-------|------------------------------------|------------------------|

| 温度/℃ | $k_{\rm O_2}/({\rm m/s})$ | $D_{\rm p,O_2}/({\rm m^2/s})$ | $k_{SO_3}/(m/s)$      | $D_{\rm p, SO_3}/({\rm m^2/s})$ |
|------|---------------------------|-------------------------------|-----------------------|---------------------------------|
| 200  | 2.31×10 <sup>-9</sup>     | $3.21 \times 10^{-17}$        | $8.25 \times 10^{-4}$ | 2.91×10 <sup>-15</sup>          |
| 250  | $1.62 \times 10^{-8}$     | $4.89 \times 10^{-17}$        | 3.30×10 <sup>-3</sup> | 2.23×10 <sup>-14</sup>          |
| 300  | $1.17 \times 10^{-7}$     | $6.11 \times 10^{-17}$        | $1.23 \times 10^{-2}$ | $1.01 \times 10^{-13}$          |
| 350  | $2.75 \times 10^{-7}$     | 7.64×10 <sup>-17</sup>        | $2.25 \times 10^{-2}$ | 3.38×10 <sup>-13</sup>          |

对于其他温度下,反应速率常数 k<sub>SO</sub>, k<sub>SO</sub>, k<sub>O</sub>, 和晶粒产物层中的扩散系数 D<sub>p.SO3</sub>、D<sub>p.SO3</sub>、D<sub>p.O</sub>,的 取值,采用这几个温度下实验数据拟合的阿累尼乌 斯方程来进行估算。

上述模型用于模拟烟气流动过程中吸收剂颗 粒与 SO3 和 SO2/O2 反应的算法流程图如图 2 所示。 该算法采用 MATLAB 实现。计算步骤如下:

1) 输入参数。t=0时,  $r_1(R, 0)=r_0$ ,  $\theta(R, 0)=0$ 。 C<sub>SO3</sub>(R<R<sub>0</sub>, 0)=C<sub>SO2/O2</sub>(R<R<sub>0</sub>, 0)=0 即 t=0 处, 颗粒位 置  $R < R_0$  处的 SO<sub>3</sub> 和 SO<sub>2</sub>/O<sub>2</sub> 浓度均为 0。 $C_{g,SO_3}(0)$ 、 Cg.SO,/O,(0)分别等于原始烟气中t=0时SO3和SO2/O2 的浓度。

2) 假定 C<sub>SO3</sub>(R<sub>0</sub>, t)、C<sub>SO2/O2</sub>(R<sub>0</sub>,t)的值,由式(4)、 (5)、(7)、(8)、(11)和(12)求得 $\partial x_{SO3}(R, t)/\partial t$ 和 $\partial x_{SO_2/O_2}(R, t)$  $t)/\partial t$ 、 $\partial X_{SO_3}(t)/\partial t$  和 $\partial X_{SO_2/O_2}(t)/\partial t$ 。计算式(15)和(16) 的左右两边,利用二分法,直到得到正确的颗粒表 面的 SO<sub>3</sub>和 SO<sub>2</sub>/O<sub>2</sub>浓度 C<sub>SO3</sub>(R<sub>0</sub>, t)、C<sub>SO2/O2</sub>(R<sub>0</sub>,t)。

3) 由(13)和(14)可得到 t=t+Δt 时 Cg,SO3(t+Δt)和  $C_{g,SO_2}(t+\Delta t)$ 的值。由式(6)、(9)和(10)可得到  $t+\Delta t$ 时所有 R 位置 $\theta(R, t+\Delta t)$ 、 $r_2(R, t+\Delta t)$ 和  $r_1(R, t+\Delta t)$ )的 值。由式(1)和(2),利用 Newton-Raphson 方法可得 到  $t+\Delta t$  时所有  $R < R_0$  位置 SO<sub>3</sub> 和 SO<sub>2</sub>/O<sub>2</sub> 的浓度  $C_{SO_3}$  $(R < R_0, t + \Delta t), C_{SO_2/O_2}(R < R_0, t + \Delta t))_{\circ}$ 

190





4) *t=t+*Δ*t*, 当 *t* 小于等于 5s 时, 重复(2)—(4),
得到所有时刻的 *C*<sub>g,SO3</sub>(*t*)和 *C*<sub>g,SO2</sub>(*t*)的值; 当 *t* 大
于 5s 时,跳出上述循环,并计算得到 SO3 的脱除
率、吸收剂的总转化率和吸收 SO3 的选择性。

5) 输出所需结果,程序结束。

#### 2 结果与讨论

#### 2.1 2种吸收剂脱除工业烟气 SO3 的动态过程

考虑到炉内燃烧生成 SO<sub>3</sub> 与 SCR 反应器内催 化氧化生成 SO<sub>3</sub>的综合控制,本文主要考察在 SCR 反应器出口喷入吸收剂脱除烟气中 SO<sub>3</sub>的过程。 SCR 反应器出口烟气温度在 300℃左右,在这个位 置喷入吸收剂,无论是固体吸收剂颗粒,还是吸收 剂溶液,SO<sub>3</sub>的吸收都可近似认为是由固体颗粒完 成的。这是因为溶液喷入烟气后雾化形成的液滴在 这个温度下会快速蒸发为固体颗粒。吸收剂对 SO<sub>3</sub> 的吸收性能与颗粒的粒径与孔隙结构密切相关。作

者在前期研究中考察了2种吸收剂颗粒结构参数对 烟气中 SO3 脱除性能的影响<sup>[21]</sup>。因而在本文中采用 上述经过优化的颗粒结构参数进一步研究了不同 吸收剂用量、SO3浓度和烟气降温历程下吸收剂颗 粒脱除烟气中 SO3 的性能。其中, Ca(OH)2 颗粒结 构参数选取为半径  $R_0=1.5\mu m$ 、初始孔隙率 $\varepsilon_0=0.62$ 、 比表面积  $A=40.0m^2/g$ ,  $Na_2SO_3$  颗粒结构参数选取半 径  $R_0=0.15\mu m$ 、初始孔隙率 $\varepsilon_0=0.23$ 、比表面积 A=91.3m<sup>2</sup>/g。模拟中选取的 SO<sub>3</sub> 浓度 2.232×10<sup>-3</sup>mol/ m<sup>3</sup>, SO<sub>2</sub> 浓度为 4.464×10<sup>-2</sup> mol/m<sup>3</sup>, O<sub>2</sub> 浓度为 2.232mol/m<sup>3</sup>(5%), 加入的 Ca(OH)<sub>2</sub>/Na<sub>2</sub>SO<sub>3</sub> 与烟气中 SO3的物质的量浓度比为 10。 吸收剂颗粒从 SCR 反应器出口喷入,随烟气流经空气预热器(APH)的 过程近似为匀速降温,进入静电除尘器(ESP)后忽略 散热损失,将烟气在 ESP 内的流动近似为等温过程。 烟气由 SCR 出口至 ESP 入口的流动时间取为 5s,在 ESP 中的流动时间取为 20s。这一小节中,以 SCR 出口烟气温度为350℃、ESP温度为150℃的工况为 例,分析喷入吸收剂后 SO3 的脱除率、吸收剂总转 化率和吸收剂吸收 SO3 的选择性随实际烟气降温过 程的变化。

图 3 给出了喷入 2 种吸收剂后, SO<sub>3</sub> 的脱除率 随实际烟气降温过程的变化。可以看到,烟气中加 入吸收剂后, SO<sub>3</sub> 脱除率在初期增长较快,而后增 长逐渐变缓,尤其是进入除尘器后(烟温降至 150℃), Na<sub>2</sub>SO<sub>3</sub> 对 SO<sub>3</sub> 的脱除率几乎不再增加, Ca(OH)<sub>2</sub> 对 SO<sub>3</sub> 的脱除率缓慢增加。这主要是由于 吸收剂刚接触烟气时烟温高、SO<sub>3</sub> 浓度高,所以吸 收反应速率快,SO<sub>3</sub> 脱除率增加显著。反应 2.5s 时 (温度降为 250℃),Ca(OH)<sub>2</sub> 对 SO<sub>3</sub> 的脱除率为 28.92%,Na<sub>2</sub>SO<sub>3</sub> 对 SO<sub>3</sub> 的脱除率为 76.25%。反应 25s 时(温度降为 150℃),Ca(OH)<sub>2</sub> 对 SO<sub>3</sub> 的脱除率



图 3 2 种吸收剂对 SO<sub>3</sub> 脱除率随实际烟气降温过程的变化 Fig. 3 Change of SO<sub>3</sub> removal efficiency by two adsorbents during the cooling process of flue gas

为 48.21%, Na<sub>2</sub>SO<sub>3</sub> 对 SO<sub>3</sub> 的脱除率为 78.68%。 Na<sub>2</sub>SO<sub>3</sub> 对 SO<sub>3</sub> 的脱除率明显高于 Ca(OH)<sub>2</sub>, 是 Ca(OH)<sub>2</sub> 的 1.6 倍。

图4给出了2种吸收剂总转化率随实际烟气降 温过程的变化,可以看到其与SO<sub>3</sub>脱除率的变化是 相似的,吸收剂加入后初期快速增加、后期缓慢增 加。进入除尘器后(烟温降至150℃),Ca(OH)<sub>2</sub>的总 转化率仍在增加,而Na<sub>2</sub>SO<sub>3</sub>的总转化率几乎不再 增加。反应2.5s时(温度降为250℃),Ca(OH)<sub>2</sub>的总 转化率为3.11%,Na<sub>2</sub>SO<sub>3</sub>的总转化率为8.64%。反 应25s时(温度降为150℃),Ca(OH)<sub>2</sub>的总转化率为 5.08%,Na<sub>2</sub>SO<sub>3</sub>的总转化率为8.95%。Na<sub>2</sub>SO<sub>3</sub>的总 转化率是Ca(OH)<sub>2</sub>的1.8倍。前面提到,Na<sub>2</sub>SO<sub>3</sub>对 SO<sub>3</sub>的脱除率是Ca(OH)<sub>2</sub>的1.6倍。2个倍数不一致, 是由于2种吸收剂在吸收SO<sub>3</sub>的同时,Na<sub>2</sub>SO<sub>3</sub>还会 与烟气中的O<sub>2</sub>反应,Ca(OH)<sub>2</sub>还会与烟气中的SO<sub>2</sub> 反应,因而2种吸收剂的总转化率倍数与其吸收 SO<sub>3</sub>的脱除率倍数之间有差异。

图 5 给出了 2 种吸收剂吸收 SO<sub>3</sub> 的选择性随实 际烟气降温过程的变化。2 种吸收剂吸收 SO<sub>3</sub> 的选 择性在 90%左右。Ca(OH)<sub>2</sub> 吸收 SO<sub>3</sub> 的选择性随实



际烟气降温而小幅增加, Na<sub>2</sub>SO<sub>3</sub> 吸收 SO<sub>3</sub> 的选择性随实际烟气降温而小幅降低。在经过优化的颗粒粒径下 2 种吸收剂对吸收 SO<sub>3</sub> 均呈现高选择性。

2.2 Ca(OH)2颗粒脱除工业烟气 SO3 性能研究

本节选取同 2.1 节中一致的经过优化的 Ca(OH)<sub>2</sub>颗粒结构参数,在不同 Ca(OH)<sub>2</sub>:SO<sub>3</sub>、SO<sub>3</sub> 浓度和降温历程下,模拟分析 Ca(OH)<sub>2</sub>颗粒加入烟 气后的脱 SO<sub>3</sub>性能。表 3 为数值模拟中 Ca(OH)<sub>2</sub>: SO<sub>3</sub>、SO<sub>3</sub>浓度和降温历程的取值。模拟中选取的基 础工况参数与 2.1 节中一致。改变其中某一变量时, 其他变量取基础工况值。

表 3 Ca(OH)<sub>2</sub>脱除工业烟气 SO<sub>3</sub>数值模拟采用的工况参数 Table 3 Condition parameters for SO<sub>3</sub> removal by

Ca(OH)<sub>2</sub> from industrial flue gas in numerical simulation

| 参数                                                     | 取值    |       |       |       |       |
|--------------------------------------------------------|-------|-------|-------|-------|-------|
| Ca(OH) <sub>2</sub> :SO <sub>3</sub>                   | 5     | 10    | )     | 15    |       |
| SO3浓度 Cg,SO3(0)×10 <sup>3</sup> /(mol/m <sup>3</sup> ) | 0.893 | 1.339 | 1.786 | 2.232 | 2.679 |
| SCR 出口烟气温度/℃                                           | 350   | 325   | 300   | 275   | 250   |

图 6 给出了不同 Ca(OH)<sub>2</sub>:SO<sub>3</sub>下模拟实际烟气 降温过程中喷 Ca(OH)<sub>2</sub> 的 SO<sub>3</sub> 脱除率、Ca(OH)<sub>2</sub> 总 转化率和 Ca(OH)<sub>2</sub> 吸收 SO<sub>3</sub> 的选择性变化。从图 6 可以看出,增加 Ca(OH)<sub>2</sub>:SO<sub>3</sub> 可以提高 SO<sub>3</sub> 脱除率。 当 Ca(OH)<sub>2</sub>:SO<sub>3</sub> 从 5 增加到 20 时, SO<sub>3</sub> 脱除率从 26.89%增加到 76.05%。但是,增加 Ca(OH)<sub>2</sub>:SO<sub>3</sub> 会降低 Ca(OH)<sub>2</sub> 颗粒的总转化率。当 Ca(OH)<sub>2</sub>:SO<sub>3</sub> 从 5 增加到 20 时,Ca(OH)<sub>2</sub>颗粒的总转化率从 5.63% 降低到 4.07%。SO<sub>3</sub> 选择性总体大于 90%(此时颗粒 半径较小,为 1.5µm),增加 Ca(OH)<sub>2</sub>:SO<sub>3</sub> 后,Ca(OH)<sub>2</sub> 吸收 SO<sub>3</sub> 的选择性降低。

图 7 给出了不同 SO<sub>3</sub>浓度下模拟实际烟气降温 过程中喷 Ca(OH)<sub>2</sub> 的 SO<sub>3</sub> 脱除率、Ca(OH)<sub>2</sub> 总转化





率和吸收 SO<sub>3</sub>的选择性。从图 7 可以看出,增加 SO<sub>3</sub> 浓度可以提高 SO<sub>3</sub> 脱除率和 Ca(OH)<sub>2</sub> 颗粒的总转化 率。当 SO<sub>3</sub> 浓度从 0.893×10<sup>-3</sup> mol/m<sup>3</sup>增加到 2.679× 10<sup>-3</sup> mol/m<sup>3</sup>时,SO<sub>3</sub> 脱除率从 28.32%增加到 52.28%, Ca(OH)<sub>2</sub> 颗粒的总转化率从 3.12%增加到 5.47%。吸 收 SO<sub>3</sub> 选择性总体大于 90%,增加 SO<sub>3</sub> 浓度后, Ca(OH)<sub>2</sub> 吸收 SO<sub>3</sub> 的选择性增加。

图8给出了不同SCR出口烟气温度下模拟实际 烟气降温过程中喷Ca(OH)<sub>2</sub>的SO<sub>3</sub>脱除率、Ca(OH)<sub>2</sub> 总转化率和吸收SO<sub>3</sub>的选择性。从图8可以看出, 提高SCR出口烟气温度可以提高SO<sub>3</sub>脱除率和 Ca(OH)<sub>2</sub>颗粒的总转化率。当SCR出口烟气温度从 250℃增加到350℃时,SO<sub>3</sub>脱除率从42.22%增加到 48.21%,Ca(OH)<sub>2</sub>颗粒的总转化率从4.30%增加到 5.08%。SO<sub>3</sub>选择性总体大于90%。提高SCR出口 烟气温度后,Ca(OH)<sub>2</sub>吸收SO<sub>3</sub>的选择性降低。





2.3 Na<sub>2</sub>SO<sub>3</sub>颗粒脱除工业烟气 SO<sub>3</sub>性能研究 本节选取同 2.1 节中一致的经过优化的 Na<sub>2</sub>SO<sub>3</sub> 颗粒结构参数,在不同 Na<sub>2</sub>SO<sub>3</sub>:SO<sub>3</sub>、SO<sub>3</sub>浓度和降 温历程下,模拟分析 Na<sub>2</sub>SO<sub>3</sub>颗粒加入烟气后的脱 SO<sub>3</sub>性能。表 4 为数值模拟中 Na<sub>2</sub>SO<sub>3</sub>:SO<sub>3</sub>、SO<sub>3</sub>浓 度和降温历程的取值。模拟中选取的基础工况参数 与 2.1 节中一致。改变其中某一变量时,其他变量 取基础工况值。

表 4 Na<sub>2</sub>SO<sub>3</sub> 脱除工业烟气 SO<sub>3</sub> 数值模拟采用的工况参数 Table 4 Condition parameters for SO<sub>3</sub> removal by Na<sub>2</sub>SO<sub>3</sub> from industrial flue gas in numerical simulation

|                                                        | -     |       |       |       |       |  |
|--------------------------------------------------------|-------|-------|-------|-------|-------|--|
| 参数                                                     | 取值    |       |       |       |       |  |
| Na <sub>2</sub> SO <sub>3</sub> :SO <sub>3</sub>       | 2     | 5     |       | 10    | 15    |  |
| SO3浓度 Cg,SO3(0)/(10 <sup>-3</sup> mol/m <sup>3</sup> ) | 0.893 | 1.339 | 1.786 | 2.232 | 2.679 |  |
| SCR 出口烟气温度/℃                                           | 350   | 325   | 300   | 275   | 250   |  |

图 9 给出了不同 Na<sub>2</sub>SO<sub>3</sub>:SO<sub>3</sub> 下模拟实际烟气 降温过程中喷 Na<sub>2</sub>SO<sub>3</sub> 的 SO<sub>3</sub> 脱除率、Na<sub>2</sub>SO<sub>3</sub> 总转 化率和 Na<sub>2</sub>SO<sub>3</sub> 吸收 SO<sub>3</sub> 的选择性变化。从图 9 可 以看出,增加 Na<sub>2</sub>SO<sub>3</sub>:SO<sub>3</sub> 可以提高 SO<sub>3</sub> 脱除率。 当 Na<sub>2</sub>SO<sub>3</sub>:SO<sub>3</sub> 从 2 增加到 15 时,SO<sub>3</sub> 脱除率从 18.12%增加到 95.90%。但增加 Na<sub>2</sub>SO<sub>3</sub>:SO<sub>3</sub> 会降低 Na<sub>2</sub>SO<sub>3</sub>颗粒总转化率。当 Na<sub>2</sub>SO<sub>3</sub>:SO<sub>3</sub> 从 2 增加到 15 时,Na<sub>2</sub>SO<sub>3</sub> 颗粒的总转化率从 10.07%降低到 7.53%。SO<sub>3</sub>选择性总体大于 80%,增加 Na<sub>2</sub>SO<sub>3</sub>:SO<sub>3</sub> 后,Na<sub>2</sub>SO<sub>3</sub> 吸收 SO<sub>3</sub> 的选择性降低。



图 10 给出了不同 SO<sub>3</sub>浓度下模拟实际烟气降 温过程中喷 Na<sub>2</sub>SO<sub>3</sub> 的 SO<sub>3</sub> 脱除率, Na<sub>2</sub>SO<sub>3</sub> 总转化 率和吸收 SO<sub>3</sub> 的选择性。从图 10 可以看出,增加 SO<sub>3</sub>浓度可以提高 SO<sub>3</sub> 脱除率和 Na<sub>2</sub>SO<sub>3</sub>颗粒的总转 化率。当 SO<sub>3</sub> 浓度从 0.893×10<sup>-3</sup> mol/m<sup>3</sup>增加到 2.679×10<sup>-3</sup> mol/m<sup>3</sup>时, SO<sub>3</sub> 脱除率从 63.43%增加到 80.96%; Na<sub>2</sub>SO<sub>3</sub> 颗粒的总转化率从 7.57%增加到 9.15%。吸收 SO<sub>3</sub>选择性总体大于 80%,增加 SO<sub>3</sub>



浓度后,Na<sub>2</sub>SO<sub>3</sub>吸收SO<sub>3</sub>的选择性增加。

图 11 给出了不同 SCR 出口烟气温度下模拟实际烟气降温过程中喷 Na<sub>2</sub>SO<sub>3</sub> 的 SO<sub>3</sub> 脱除率、Na<sub>2</sub>SO<sub>3</sub> 总转化率和吸收 SO<sub>3</sub> 的选择性。从图 11 可以看出, 提高 SCR 出口烟气温度可以提高 SO<sub>3</sub> 脱除率和 Na<sub>2</sub>SO<sub>3</sub> 颗粒的总转化率。当 SCR 出口烟气温度从 250℃增加到 350℃时, SO<sub>3</sub> 脱除率从 64.16%增加到 78.68%; Na<sub>2</sub>SO<sub>3</sub> 颗粒的总转化率从 6.54%增加到 8.95%。SO<sub>3</sub>选择性总体大于 80%。提高 SCR 出口烟气温度后, Na<sub>2</sub>SO<sub>3</sub> 吸收 SO<sub>3</sub> 的选择性降低。





#### 3 结论

本文采用经过优化的吸收剂颗粒结构参数,在 不同吸收剂用量、SO<sub>3</sub>浓度和降温历程下对Ca(OH)<sub>2</sub> 和 Na<sub>2</sub>SO<sub>3</sub>颗粒吸收脱除工业烟气 SO<sub>3</sub>的过程开展 了数值模拟,取得了如下主要结论。

在烟气降温过程中,加入吸收剂后,SO<sub>3</sub>的脱 除率和吸收剂总转化率均呈现初期快速增长、后期 缓慢增长的趋势;进入除尘器后,Ca(OH)<sub>2</sub>对 SO<sub>3</sub> 吸收缓慢, Na<sub>2</sub>SO<sub>3</sub> 对 SO<sub>3</sub> 基本停止吸收。Na<sub>2</sub>SO<sub>3</sub> 对 SO<sub>3</sub> 的脱除性能明显优于 Ca(OH)<sub>2</sub>,在除尘器出 口达到的 SO<sub>3</sub> 脱除率是 Ca(OH)<sub>2</sub> 的 1.6 倍。

吸收剂用量(Ca(OH)<sub>2</sub>/Na<sub>2</sub>SO<sub>3</sub>:SO<sub>3</sub>)增加、烟气 中原始 SO<sub>3</sub> 浓度高、吸收剂加入位置烟温高均可以 提高 SO<sub>3</sub> 脱除率,其中增加 Ca(OH)<sub>2</sub>/Na<sub>2</sub>SO<sub>3</sub>:SO<sub>3</sub> 提高 SO<sub>3</sub> 脱除率的效果最为显著,SO<sub>3</sub> 脱除率可达 90%以上。但相应地 2 种吸收剂的转化率都会下降。 总体上 2 种吸收剂的转化率均不高,在 10%左右。

小粒径下2种吸收剂对吸收SO<sub>3</sub>均呈现高选择性,Ca(OH)<sub>2</sub>颗粒吸收SO<sub>3</sub>的选择性大于 0.9,Na<sub>2</sub>SO<sub>3</sub>颗粒吸收的选择性大于 0.8。

#### 参考文献

- LU Jianyi, ZHOU Zhiyong, ZHANG Hanzhi, et al. Influenced factors study and evaluation for SO<sub>2</sub>/SO<sub>3</sub> conversion rate in SCR process[J]. Fuel, 2019, 245: 528-533.
- [2] XIANG Baixiang, ZHANG Man, WU Yuxin, et al. Experimental and modeling studies on sulfur trioxide of flue gas in a coal-fired boiler[J]. Energy & Fuels, 2017, 31(6): 6284-6297.
- [3] 张杨,冯前伟,杨用龙,等. 燃煤电厂烟气 SO<sub>3</sub> 排放控 制研究进展[J]. 中国电机工程学报,2021,41(1): 231-248.
   ZHANG Yang, FENG Qianwei, YANG Yonglong, et al.

A review on  $SO_3$  emission control of coal-fired power plant[J]. Proceedings of the CSEE, 2021, 41(1): 231-248(in Chinese).

- [4] LI Yuzhong, ZHU Qingwu, YI Qiujie, et al. Experimental method for observing the fate of SO<sub>3</sub>/H<sub>2</sub>SO<sub>4</sub> in a temperature-decreasing flue gas flow: creation of state diagram[J]. Fuel, 2019, 249: 449-456.
- [5] 何柯佳,郑娜,宋蔷,等. 钙基吸收剂脱除 SO<sub>x</sub> 过程 中 SO<sub>3</sub> 吸收量的测量方法[J].中国电机工程学报,2019, 39(20): 5973-5978.
  HE Kejia, ZHENG Na, SONG Qiang, et al. A novel method for the measurement of SO<sub>3</sub> absorption amount by calcium based absorbent during SO<sub>x</sub> removal process[J]. Proceedings of the CSEE, 2019, 39(20): 5973-5978(in Chinese).
- [6] 李高磊,郭沂权,张世博,等.超低排放燃煤电厂 SO<sub>3</sub>
   生成及控制的试验研究[J].中国电机工程学报,2019, 39(4):1079-1086.

LI Gaolei, GUO Yiquan, ZHANG Shibo, et al. Experimental research on  $SO_3$  generation and control in ultra-low emission coal-fired power plant[J]. Proceedings of the CSEE, 2019, 39(4): 1079-1086(in Chinese).

- [7] XIANG Baixiang, SHEN Wenfeng, ZHANG Man, et al. Effects of different factors on sulfur trioxide formations in a coal-fired circulating fluidized bed boiler[J]. Chemical Engineering Science, 2017, 172: 262-277.
- [8] CHEN Peng, WANG Zhiqiang, CHANG Jingcai, et al. Experimental study of the reactivity of Ca-based matters with SO<sub>3</sub>[C]//2011 Asia-Pacific Power and Energy Engineering Conference. Wuhan: IEEE, 2011: 1-4.
- [9] ZHENG Chenghang, LUO Cong, LIU Yong, et al. Experimental study on the removal of SO<sub>3</sub> from coal-fired flue gas by alkaline sorbent[J]. Fuel, 2020, 259: 116306.
- [10] WANG Hui, CHEN Denggao, LI Zhenshan, et al. SO<sub>3</sub> Removal from flue gas with Ca(OH)<sub>2</sub> in entrained flow reactors[J]. Energy & Fuels, 2018, 32(4): 5364-5373.
- [11] STEWARD F R, KARMAN D, KOCAEFE D. A comparison of the reactivity of various metal oxides with SO<sub>3</sub>[J]. The Canadian Journal of Chemical Engineering, 1987, 65(2): 342-344.
- [12] THIBAULT J D, STEWARD F R, RUTHVEN D M. The Kinetics of absorption of SO<sub>3</sub> in calcium and magnesium oxides[J]. The Canadian Journal of Chemical Engineering, 1982, 60(6): 796-801.
- [13] KOCAEFE D, KARMAN D, STEWARD F R. Comparison of the sulfation rates of calcium, magnesium and zinc oxides with SO<sub>2</sub> and SO<sub>3</sub>[J]. The Canadian Journal of Chemical Engineering, 1985, 63(6): 971-977.
- [14] EPRI. Results of full-scale testing of sodium bisulfite injection for flue gas sulfuric acid control[R]. Palo Alto: EPRI, 2002.
- [15] HE Kejia, SONG Qiang, YAN Zhennan, et. al. Study on competitive absorption of SO<sub>3</sub> and SO<sub>2</sub> by calcium hydroxide[J]. Fuel, 2019, 242: 355-361.
- [16] HE Kejia, SONG Qiang, YAN Zhennan, et. al. SO<sub>3</sub> removal from flue gas by using Na<sub>2</sub>SO<sub>3</sub>[J]. Energy & Fuels, 2020, 34(6): 7232-7241.
- [17] 高智溥, 胡冬, 张志刚, 等. 碱性吸附剂脱除 SO<sub>3</sub> 技术 在大型燃煤机组中的应用[J]. 中国电力, 2017, 50(7): 102-108.

GAO Zhipu, HU Dong, ZHANG Zhigang, et al. Application of  $SO_3$  removal with alkaline sorbent injection in large capacity coal-fired power plants[J]. Electric Power, 2017, 50(7): 102-108(in Chinese).

- [18] XIE Dong, WANG Haiming, TAO Jun, et al. Sulfur trioxide removal performance of alkaline sorbents injection in the temperature range 400-705 °C : a pilot-scale study[J]. Journal of Chemical Technology & Biotechnology, 2019, 94(7): 2382-2388.
- [19] BLYTHE G, DOMBROWSIKE K. SO<sub>3</sub> mitigation guide update[R]. Palo Alto: RPRI, 2004.
- [20] BENSON L B. Use of magnesium hydroxide for reduction of plume visibility in coal-fired power plants[C]// Proceedings of the EPA-DOE-EPRI-A and WMA Power Plant Air Pollutant Control Mega Symposium. Pittsburgh: A&WMA, 2006.
- [21] 何柯佳. 燃煤烟气 SO<sub>3</sub>吸收脱除过程中的竞争机制研究
  [D]. 北京:清华大学,2021.
  HE Kejia. Competition mechanism of SO<sub>3</sub> removal by adsorption in coal-fired flue gas[D]. Beijing: Tsinghua University, 2021(in Chinese).
- [22] LI Zhenshan, SUN Hongming, CAI Ningsheng. Rate equation theory for the carbonation reaction of CaO with CO<sub>2</sub>[J]. Energy & Fuels, 2012, 26(7): 4607-4616.
- [23] WANG Hui, LI Zhenshan, FAN Xiaoxu. Rate-equation-based grain model for the carbonation of CaO with CO<sub>2</sub>[J]. Energy & Fuels, 2017, 31(12): 14018-14032.



在线出版日期:2021-05-17。 收稿日期:2021-01-28。 作者简介:

何柯佳(1991), 女, 博士, 研究方向为 燃煤烟气中 SO<sub>3</sub> 吸收控制基础研究, hkj16@tsinghua.org.cn;

何柯佳

唐祚洲(1997),男,博士,研究方向为 燃煤烟气中硫酸、水二元凝结特性研究, tzz19@mails.tsinghua.edu.cn;

\*通信作者: 宋蔷(1971), 女,副教授, 研究方向为能源利用过程中的污染物形成 与控制技术, qsong@tsinghua. edu.cn;

姚强(1962),男,教授,研究方向为燃 烧理论与技术,燃烧污染控制理论与技术, yaoq@tsinghua.edu.cn。

(责任编辑 王庆霞)

## Performance of SO<sub>3</sub> Removal From Industrial Flue Gas by Adsorption

HE Kejia, TANG Zuozhou, SONG Qiang<sup>\*</sup>, YAO Qiang

(Department of Energy and Power Engineering, Tsinghua University)

KEY WORDS: SO<sub>3</sub>; Ca(OH)<sub>2</sub>; Na<sub>2</sub>SO<sub>3</sub>; flue gas; competitive model

The use of high-sulfur coal and installation of selective catalytic reduction (SCR) reactor increases  $SO_3$  concentration in the flue gas. The increase in  $SO_3$  concentration causes corrosion of equipment such as air preheaters and fans, and also aggravates smog and acid deposition. It is feasible to inject adsorbents to remove  $SO_3$  from flue gas. However, the process of  $SO_3$  removal from industrial flue gas using alkaline adsorbents and sulfites lacks a systematic analysis. Numerical simulation is carried out to study the industrial process of  $SO_3$  removal from the flue gas by adsorbents such as  $Ca(OH)_2$  and  $Na_2SO_3$ . The influence of  $Ca(OH)_2/Na_2SO_3$ : $SO_3$  concentrations and the cooling process of flue gas on  $SO_3$  removal performance is discussed.

Fig. 1 shows the change of SO<sub>3</sub> removal efficiency by two adsorbents during the cooling process of flue gas. The two adsorbents can effectively remove SO<sub>3</sub>. During the cooling process of flue gas, once the adsorbents are injected into the flue gas, the SO<sub>3</sub> removal efficiencies and the conversions of the two adsorbents first quickly increase and then slowly increase. After entering the electrostatic precipitator, Ca(OH)<sub>2</sub> adsorbs SO<sub>3</sub> slowly, and Na<sub>2</sub>SO<sub>3</sub> almost stops adsorbing SO<sub>3</sub>. The performance of SO<sub>3</sub> removal by Na<sub>2</sub>SO<sub>3</sub> is much better than by Ca(OH)<sub>2</sub>. The SO<sub>3</sub> removal efficiency of Na<sub>2</sub>SO<sub>3</sub> is 1.6 times that of Ca(OH)<sub>2</sub> at the outlet of the electrostatic precipitator.

Fig. 2 shows the change of SO<sub>3</sub> removal efficiency, the total conversion of Ca(OH)<sub>2</sub> and the SO<sub>3</sub> selectivity with Ca(OH)<sub>2</sub>:SO<sub>3</sub>. Fig. 3 shows the change of SO<sub>3</sub> removal efficiency, the total conversion of Na<sub>2</sub>SO<sub>3</sub> and the SO<sub>3</sub> selectivity with Na<sub>2</sub>SO<sub>3</sub>:SO<sub>3</sub>. The increase of Ca(OH)<sub>2</sub>/Na<sub>2</sub>SO<sub>3</sub>:SO<sub>3</sub>, the SO<sub>3</sub> concentration of the original flue gas, and the temperature at the adsorbentinjection position promotes the SO<sub>3</sub> removal. The effect of increasing Ca(OH)<sub>2</sub>/Na<sub>2</sub>SO<sub>3</sub>:SO<sub>3</sub> is the most significant, and the SO<sub>3</sub> removal efficiency can reach higher than



Fig. 1 TChange of SO<sub>3</sub> removal efficiencies by two adsorbents during the cooling process of flue gas







Fig. 3 Change of SO<sub>3</sub> removal efficiency, the total conversion of Na<sub>2</sub>SO<sub>3</sub> and the SO<sub>3</sub> selectivity with Na<sub>2</sub>SO<sub>3</sub>:SO<sub>3</sub>

90%. However, the conversions of the two adsorbents decrease accordingly. The conversions of the adsorbents are low, which are around 10%. With the small particle radius, the two adsorbents both exhibit high selectivity for adsorbing SO<sub>3</sub>. The selectivity of adsorbing SO<sub>3</sub> by Ca(OH)<sub>2</sub> is greater than 0.9, and the selectivity of adsorbing SO<sub>3</sub> by Na<sub>2</sub>SO<sub>3</sub> is greater than 0.8.