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Effect of combustion temperature on pressurized combustion and C/N

transformation characteristics of Shenhua bituminous coal

ZHANG Yu DU Shangbin ZHANG Wenda ZHAO Yijun SUN Shaozeng

( School of Energy Science and Engineering Harbin Institute of Technology Harbin 150001 China)
Abstract: Pressurized 0,/CO, combustion technology is a new combustion technology that can achieve efficient CO, capture. In order to
explore the combustion and pollutant emissions characteristics of pulverized coal in a pressurized O,/CO, atmosphere the pressur—
ized combustion ( residence time is 0.3 s) and N transformation characteristics of Shenhua bituminous coal were investigated by a pressur—
ized drop tube furnace ( PDTF) experimental system at a pressure of 0.9 MPa. Effect of combustion temperature ( 1 073—1 273 K) on the
formation rules of gaseous products ( CO N,O and NO) in the O,/CO, combustion process was analyzed by online measurement and
effect of combustion temperature on the physical and chemical structure of combustion residues was analyzed by off—line characterization.
In the pressurized combustion process of pulverized coal the increase of combustion temperature causes the conversion rate of fuel nitrogen

to NO, in coal to increase first and then decrease. In the combustion temperature range of 1 073-1 273 K compared with N,O the in—
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crease of combustion temperature has less effect on NO release and the conversion of fuel nitrogen in coal to gas—phase NO_ is mainly de—
termined by the generation of N,O. In the process of coal pressurized O,/CO, combustion the concentrations of CO and NO gradually de—
crease and increase with combustion temperature while the release of N, O increases first and then decreases with combustion temperature.
At 1273 K the emission concentrations of CO  NO and N,O reach 363.5x107° 10.2x107% and 6.8x107® respectively. The FTIR results
show that the oxygen—containing groups of the O—C =0 structure on the surface of pulverized coal particles have higher combustion reac—
tivity than C—OH structure. As the combustion temperature increases from 1 073 K to 1 273 K the relative content of C—0 dose
not change much and the relative contents of 0—C =0 C =0 and C—H decrease by 1% 1% and 7% respectively while the rela—
tive content of C =C/C—C increases by 7%. It shows that the increasing pressurized combustion temperature can promote the rapid con—
sumption of the C—H structure and increase the aromatization of the carbon residues. When the temperature is 1 273 K the relative con—
tent of N elements in the form of N=5 and N-6 on the surface of pulverized coal combustion residues decreases and increases by 7% and
5% respectively. The main source of NO, nitrogen—containing precursors released during pressurized O, /CO, combustion is the inherent
N-Q structure in coke and its relative content varies little.
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1
Table 1 Proximate and ultimate analysis of Shenhua bituminous coal %
M4 Va Ay FC 4 H,q N Sad (O3
4.14 27.84 9.15 58.87 71.99 4.16 1.26 0.36 8.94
! 4
b m( N - NO) _MN @ Qflo“’c( NO)dr (1)
1.5~6.0 g/h V. Yo
3.45~13.80 L/min N, m(N = N,0) = 2M( N) Qf 1076C( N,0)dr (2)
N2 Vm 0
m(N - NO,) =wf 10°°C(NO,) di  (3)
N,.0, CO, V. o
. 600 mm 50 mm. () = m(N=NO) +m(N-N0) +m(N-NO,) 00%
4C mf{ N)
. (4)
m( N-NO) .m( N-N,0) .m( N-NO,)
NO.N,0.NO, N g;
n( N) N NO, %; M( N) N
g/mol; f( N) %;
C(NO) .C(N,0) C(NO,)
NO.N,0.NO, mol /L; ¢
s; Q L/min; V
22.4 L/mol; m
2o
2
Table 2 Experimental conditions of pressurized
combustion experiments
/K 1073.1123.1 173.1 273
/MPa 0.3.0.6.0.9.1.2
/s 0.2.0.3.0.6.0.9
! /(g+h™) 1.5.3.0.4.5.6.0
Fig.1 PDTF experimental system /(L *min™") 3.45.6.90.10.35.13.80
1.2 1.2.2
1.2.1
Nicolet5700 4 000 ~
( FTIR) 400 cm™ 4 cm™ 32 . KBr
16 . 2,
FTIR CO. KBr
NO N,O ( 1:200 "% 160 mg.
2%) o 1 273 K/0.9 MPa
N o ESCALAB 250Xi X
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Fig4  Fitting results of C 1s and N 1s peaks of solid—phase carbon

residues produced by pressurized combustion at 1 273 K
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Fig.5 Effects of different temperatures on the
relative XPS peak area of residual chars
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