基于宽带紫外吸收的火焰温度和 OH/NH/NO 浓度同步测量*

杨鑫宇1)2) 彭志敏2) 丁艳军2) 杜艳君1)†

 (华北电力大学控制与计算机工程学院,北京 102206)
 (清华大学能源与动力工程系,电力系统与发电设备控制 与仿真国家重点实验室,北京 100084)

(2022年1月29日收到; 2022年4月20日收到修改稿)

温度是燃烧过程中影响反应路径和速率的重要参数,决定着燃烧和能量交换效率,OH,NH,NO等组分参与燃烧中的关键基元反应,并影响NO_x污染物的生成.因此,温度和OH,NH,NO浓度的同步测量对于判断 燃烧状态、研究反应机理和排放特性具有重要意义.本文搭建了高空间分辨率的宽带紫外吸收光谱测量系统, 实现了火焰温度和OH,NH,NO浓度的同步测量,并对3种组分宽带吸收光谱的温度灵敏度和浓度检出限进行 了定量分析.随后,利用所建立的测量方法对NH₃/CH₄/air常压平面预混火焰的温度和OH,NH,NO浓度的 高度分布进行了高精度测量:NH的1σ检出限达到1.8×10⁻⁹ m (1560 K),在常压火焰实现了10⁻⁹ 量级的NH 吸收光谱测量;OH和NO的1σ检出限分别达到60×10⁻⁹ m (1590 K)和1×10⁻⁶ m (1380 K),也明显优于现有 的红外激光吸收光谱测量结果.实验所得温度和OH,NO,NH浓度分布曲线与基于Okafor等机理的计算流 体动力学预测结果非常符合,验证了基于宽带紫外吸收光谱方法的温度和组分浓度同步测量效果.

关键词:宽带紫外吸收光谱,燃烧诊断,温度测量,浓度测量 PACS: 33.20.lg, 47.70.Pq, 07.60.Rd, 47.80.Fg

DOI: 10.7498/aps.71.20220208

1 引 言

近年来,随着能源清洁高效利用和温室气体减 排要求的日益提高,能源燃烧利用过程的反应机理 及应用研究备受关注,发展先进的光学测试手段实 现燃烧场中多物理参数的准确同步测量至关重要. 火焰温度作为燃烧诊断中最重要的测量参数之一, 不仅影响着燃烧系统与外界的能量交换过程,而且 决定了燃烧反应的进行和速率快慢;与此同时,燃 烧反应过程的中间自由基和产物,如 OH, NH, NO 的浓度测量同样对燃烧状态判断和机理研究 具有重要意义: NO 分子本身是燃烧中污染物 NO_x 的主要来源^[1], OH 自由基是含氢燃料燃烧中支链 反应的重要载体^[2],同时也对 NO 的生成有着强烈 的促进作用^[3,4],而 NH 则是碳氢燃料燃烧中快速 型 NO 生成过程的重要中间组分^[5],也是含 NH₃ 燃烧中 NO 生成和消耗的重要途径^[6].因此,实现 上述多参数同步高精度测量对燃烧状态判断以及 反应机理和排放特性研究具有重要意义.

在众多燃烧诊断方法中,吸收光谱测量方法具 有原位测量、非侵入、响应速度快等优势,可以实现 温度与绝对浓度的同步测量,获得时间演化或空间 分布结果.其中,可调谐半导体激光吸收光谱 (tunable

* 国家自然科学基金 (批准号: 51906120, 11972213) 和华能集团总部科技项目 "基础能源科技研究专项" (批准号: HNKJ20-H50) 资助的课题.

† 通信作者. E-mail: duyanjun13@gmail.com

© 2022 中国物理学会 Chinese Physical Society

http://wulixb.iphy.ac.cn

diode laser absorption spectroscopy, TDLAS) 使用 1-10 µm 的红外可调谐激光器作为光源,测量系统 简单紧凑且价格相对低廉,在过去的30年间得到 了迅速的发展,被广泛应用于实验室火焰^[7-9]、 激波管[10-12]、发动机[13-15]等不同燃烧环境中,成 为温度和绝对浓度测量的燃烧诊断标准方法.但由 于红外波段分子光谱吸收较弱, TDLAS 的温度浓 度同步测量主要依赖燃烧中具有较高浓度的燃烧 产物 H₂O 或 CO₂^[16], 对于 OH^[7,17], NO^[1,12], NH 等 低浓度组分的测量研究较少,浓度测量十分困难. 如 Bürkle 等^[7] 在甲烷扩散火焰中使用 1.53 μm 激 光器测量了 OH 浓度, 但由于存在 H₂O 干扰, 在体 积分数为 2300×10⁻⁶ 的较高浓度下信噪比仅有 25, 检出限为 92×10⁻⁶; Shang 等^[12] 在硝基甲烷热解实 验中使用 5.26 µm 的 QCL 激光器测量了 NO 浓 度,在1000 K 下检出限为100×10-6,1400 K 下检 出限为 200×10-6; 而对于体积分数在 10-6 量级的 NH 自由基,由于浓度低、吸收弱,红外 TDLAS 难 以应用, 仅有学者使用紫外激光吸收光谱[18,19]和 紫外腔衰荡光谱 (cavity ring-down spectroscopy, CRDS)^[5,20] 实现平面火焰中 NH 的绝对浓度测量. 如 Lamoureux 等^[5]在 5 kPa 低压平面火焰中的 NH 测量, 检出限为 0.1×10⁻⁶. 然而, 紫外激光器的 价格昂贵、激光系统复杂, CRDS 光学测量系统同 样复杂精密,紫外 CRDS 实验难度较大,难以应用 推广:而且紫外激光器和谐振腔高反镜的波长选择 性也严重限制了紫外 CRDS 实现温度和多组分浓 度同步测量.

与激光吸收光谱不同,宽带紫外吸收光谱采用 廉价的紫外宽谱光源和光谱仪,系统简单、实验难 度较低,而且宽波长覆盖范围提供了多光谱同步测 量能力,具有燃烧诊断中多参数(温度和上述多种 低浓度组分)同步测量的潜力.2012年,Bruggeman 等^[21]首次在大气压放电等离子体中使用发光二极 管 (light-emitting diode, LED)和高分辨率光谱仪 实现了 OH浓度和温度同步测量,测得的 OH 浓度 与理论模型预测结果一致,温度与等离子体诊断中 常用的示踪法 N₂(C-B)(0-0)发射光谱测温结果一 致.此后,宽带紫外吸收光谱在等离子体诊断中被 大量应用于温度^[21,22]、OH^[23,24]和 NO^[25]浓度的测 量.然而,宽带紫外吸收光谱在燃烧诊断中的应用 还相对较少.1988年,Lempert^[26]使用 OH 等离子 收光谱实现了 H₂/air 平面预混火焰温度及 OH 浓 度测量,但是受限于等离子体光源稳定性、早期光 谱测量设备 (探测器为阵列光电倍增管) 噪声及共 振吸收测量理论的不完善,因此温度及 OH 浓度测 量效果有待进一步提高. 2011年,中国科学院安徽 光学精密机械研究所刘宇等[27]使用氙灯和中阶梯 光谱仪实现了蜡烛、酒精灯、酒精喷灯等火焰的 OH 浓度测量. 近几年, 宽带紫外吸收在燃烧诊断 得到一定的关注. 瑞典 Lund 大学的 Weng 等利用 宽带紫外吸收光谱先后在火焰中测量了 SO₂^[28], KOH/KCl^[29], NO/NH₃^[30] 等组分浓度; White 等^[31] 和 Yang 等^[32] 分别使用 OH(A-X) 的 1-0 和 0-0 振 动谱带进行了 CH₄/air 火焰的温度和 OH 浓度同 步测量,得到了沿高度的温度浓度分布曲线.其中, Yang 等^[32] 还使用 2.3 µm 的 CO 吸收谱线, 利用 TDLAS 测量了火焰温度沿高度的分布,与OH宽 带吸收测量结果非常符合.已有研究说明了宽带紫 外吸收光谱具有火焰温度和 OH, NO 等浓度的测 量能力. 然而, 对于浓度更低、空间分布范围更窄 (半高全宽小于 0.5 mm) 的 NH 自由基, 即使是紫外 CRDS 也没有在常压火焰中的测量研究,使用宽带 紫外吸收能否实现 NH 浓度测量尚不明确. 此外, 仅使用过 OH 的宽带紫外吸收光谱测量火焰温度, 能否使用 NO 和 NH 光谱测量温度还有待研究.

本文以 NH₃/CH₄/air 常压平面预混火焰为研 究对象,搭建宽带紫外吸收光谱的高空间分辨率测 量系统,实现火焰面内和火焰面上方温度与 OH, NH, NO 三种组分浓度的空间分布同步测量,并基 于 Okafor 等^[33]提出的机理进行了计算流体动力 学 (computational fluid dynamics, CFD) 模拟.分 别通过仿真和实验手段定量分析了三种组分光谱 的温度灵敏度和浓度检出限,并进一步通过相同高 度下不同光谱实测温度之间的对比,以及温度浓度 曲线与 CFD 模拟结果的对比,验证宽带紫外吸收 光谱对于温度和 OH, NO, NH 等组分浓度的测量 准确性,为燃烧中温度及组分浓度同步测量提供诊 断方法及实验数据参考.

2 宽带吸收光谱理论

2.1 原 理

宽带吸收光谱的原理基于 Beer-Lambert 定 律.当一束光穿过均匀吸收介质时, 原始光强 *I*₀(ν) 和透射光强 It(v)遵循如下关系式:

$$\alpha\left(\nu\right) = -\ln\left[\frac{I_{\rm t}\left(\nu\right)}{I_{\rm 0}\left(\nu\right)}\right] = \kappa\left(\nu\right) \cdot L,\tag{1}$$

$$\kappa(\nu) = P \cdot X \cdot \sum_{i} S_{\mathbf{P},i}(T) \varphi_{i}(\nu), \qquad (2)$$

其中 ν 是光的频率, α 是吸收率, κ 是吸收系数, P是压强, X是待测组分的摩尔分数, T是温度, $S_{P}(T)$ 是谱线的单位压力线强度, $\varphi(\nu)$ 是谱线线型 函数, 下标i表示第i条谱线.

在 TDLAS 中, 线强度 S_P(T)可由 HITRAN^[34] 或 HITEMP^[35]数据库查询得到. 而对于宽带吸收 光谱测量的双原子分子或自由基的紫外吸收谱线, 这两个数据库没有提供足够的谱线数据, 需要依赖 文献提供的参数进行计算, 公式如下:

$$S_{\rm P}(T) = \frac{Ac^2 g_{\rm nuc} \left(2J'+1\right)}{8\pi \nu_0^2 k T Q\left(T\right)} \exp\left(-\frac{E''}{kT}\right) \\ \times \left[1 - \exp\left(-\frac{h\nu_0}{kT}\right)\right], \qquad (3)$$

其中c是光速, h是普朗克常量, k是玻尔兹曼常量, A是爱因斯坦辐射系数, J是转动量子数, E是能级, ν_0 是谱线中心频率, g_{nuc} 是核统计权重, Q(T)是配分函数, 单引号表示跃迁的上能态, 双引号表示跃迁的下能态. 在本文中, 上述分子参数来自于 EXOMOL^[36]数据库.

图 1 所示为本文待测的三种组分 OH, NH, NO 以及三种主要燃烧产物 CO, CO₂, H₂O 在 1800 K 下的线强度, 图中虚线框表示三种待测组分所采用 的测量波段. 从图 1 中的线强度及其分布可以看 出, 紫外吸收光谱在三种低浓度待测组分的检测方 面相比于红外 TDLAS 具有显著优势. 一方面, 三 种待测组分的紫外谱线强度均高于相应红外波段 2—3 个数量级, 这使得紫外吸收光谱相比于红外 TDLAS 具有更低的检出限. 另一方面, 火焰中大 量存在的燃烧产物 CO, CO₂, H₂O 的吸收光谱主 要集中在红外波段, 这使得紫外吸收光谱测量可以 免受红外 TDLAS 测量中严重的燃烧产物干扰.

而在宽带紫外吸收光谱中,由于光谱仪的使 用,探测的光强被仪器函数展宽,该过程可以描述 为探测光强和狭缝函数的卷积.则宽带吸收测量的 吸收率α₁(ν)与(1)式中测量的真实吸收率α(ν)不 同,其谱线变宽、吸收变弱,两个吸收率的关系可 以描述为

$$\alpha_{\mathrm{I}}(\nu) = -\ln\left[\frac{I_{\mathrm{t}}(\nu) \otimes \Phi(\nu)}{I_{0}(\nu) \otimes \Phi(\nu)}\right]$$

 $\approx -\ln\left\{\exp\left[-\alpha\left(\nu\right)\right]\otimes\Phi\left(\nu\right)\right\},\qquad(4)$

其中 $\Phi(\nu)$ 是光谱仪的狭缝函数,可以用高斯函数 来描述.

图 1 1800 K 条件下待测组分 OH, NO, NH 及三种主要 燃烧产物 CO, CO₂, H₂O 线强度. 其中 OH, NO, NH 数据来 自 EXOMOL 数据库; CO, CO₂, H₂O 数据来自 HITEMP 数 据库

Fig. 1. Line-strengths of OH, NO, NH and CO, CO_2 , H_2O at 1800 K. The data of OH, NO, NH are taken from the EXOMOL database, and that of CO, CO_2 , and H_2O are taken from the HITEMP database.

由于仪器函数的展宽往往远大于 OH 分子的 谱线自身展宽,因此尽管谱线自身线型函数 $\varphi(\nu)$ 的变化基本不会引起展宽后的吸收率 $\alpha_{\rm I}(\nu)$ 的改 变.以 Girard 等^[37]测量的 OH 高温谱线展宽系数 为例,可以计算出 OH 在 2000 K、1.01×10⁵ Pa 的 N₂氛围中,自身压力展宽只有 0.48 pm,远小于本 文实验中光谱仪分辨率 30 pm 乃至一般商用光谱 仪的分辨率 (> 0.1 nm).因此,可以认为 OH 宽带 吸收光谱的吸收率函数基本只与压强 *P*、温度 *T*、 OH 摩尔分数 *X* 以及光谱仪分辨率有关,而不会受 到其他气体分子浓度、谱线自身展宽系数不确定度 等影响.

利用 (1) 式—(4) 式 可以计算出以温度T和 摩尔分数X为自变量的宽带吸收光谱理论吸收率 $\alpha_{I}^{cal}(X,T)$,则可以根据下式通过最小二乘拟合计 算出T和X:

$$(X,T) = \underset{X \ge 0, T > 0}{\arg\min} \left[-\ln\left(\frac{I_{\mathrm{f}+\mathrm{l}} - I_{\mathrm{f}}}{I_{\mathrm{l}} - I_{\mathrm{b}}}\right) - \alpha_{\mathrm{l}}^{\mathrm{cal}}\left(X,T\right) \right]^{2},\tag{5}$$

其中 I_{f+1} , I_f , I_1 和 I_b 是四幅不同的测量光谱. I_{f+1} 是 在火焰燃烧、光源开启时测量的光谱; I_f 是在火焰 燃烧、光源关闭时测量的光谱, 则 $I_t \otimes \Phi = I_{f+1} - I_f$, 用于消除吸收信号中火焰发射光谱的影响; I_1 是在火焰熄灭、光源开启时测量的光谱; I_6 是在火焰熄灭、光源关闭时测量的背景光谱, 则 $I_0 \otimes \Phi = I_1 - I_6$,用于在基线信号中扣除背景光谱.

2.2 温度灵敏度分析

对 OH, NH 和 NO 的宽带吸收光谱拟合, 均 可以同时得到火焰温度和相应组分浓度信息. 但由 于光谱特性的不同, 各组分宽带吸收光谱的温度灵 敏度也不同, 这可以通过仿真的不同温度下吸收率 的对比清晰地展示出来. 图 2(a)—(c) 所示为 OH, NH 和 NO 在三个不同温度下的峰值归—化吸收率, 波长范围和光谱分辨率与实验一致. 在 1700 K 时, 不同振动带的下能态能级也被绘制出来, 因为它们 与温度灵敏度密切相关. 从图 2 可以明显看出, NO 的吸收率在不同温度下差异最大, 说明其温度灵敏 度在三种组分宽带吸收光谱中最高; 其次是 OH 吸 收率, 存在变化明显的热线和变化不明显的冷线; 而不同温度下 NH 吸收率变化最小, 说明其温度灵 敏度较低.

进一步,为了定量表征三种组分宽带吸收光谱 温度灵敏度之间的数量关系,仿真了三种组分的吸收 率并添加高斯随机噪声,而后拟合温度,通过多次 重复统计得到温度不确定度.则在信噪比 (signalto-noise ratio, SNR)保持相同的前提下,温度灵敏 度与拟合得到的温度相对不确定度成反比.图3给 出了 SNR保持 100、通过 1000次随机噪声重复拟 合得到的温度相对标准差,温度范围是 1000— 2500 K.对比三种光谱可以发现:温度灵敏度明显 存在 NO>OH>NH 的关系,而且在 2000 K下 NO 温度灵敏度是 OH 的 3 倍, NH 的 8 倍.

上述不同组分宽带吸收光谱温度灵敏度区别的主要原因在于下能态能级分布的不同.根据 Yang等^[32]的研究可知,多谱线测温的灵敏度随谱 线数量、下能态能级的分布范围增大而增加.而从 图 2 给出的下能态能级分布中可以看出:NO的不 同振动带 0-0, 1-1, 2-2 均存在于测量区域,下能态 能级分布范围广,为 0—7000 cm⁻¹,而且谱线密集 数量巨大.OH 光谱下能态能级具有与 NO 类似的 分布范围,但谱线数量相对于 NO 明显较少.相比 之下, NH 实际有效的测温谱线主要是下能态能级 分布在 0—1200 cm⁻¹ 的数量较少的谱线,而下能 态能级较高的谱线中, 1-1 振动带太弱而无法识别 测量, 336 nm 附近的 0-0 振动带 Q 支谱线重叠严 重在不同温度下变化并不明显.因此, NO 具有最 高温度灵敏度, 而 NH 的温度灵敏度明显低于 OH 和 NO.

图 2 不同温度下仿真的峰值归一化的吸收率和 1700 K 下线强度大于最大线强 1% 的谱线的下能态能级 (a) OH; (b) NH; (c) NO

Fig. 2. Simulated peak normalized absorbance at various temperatures and lower-state energies of lines with line-strength more than 1% of the maximum line-strength at 1700 K: (a) OH; (b) NH; (c) NO.

图 3 仿真信噪比为 100 时不同温度条件下温度拟合的相 对标准差

Fig. 3. The relative standard deviation of fitted temperature with the simulated signal-to-noise ratio of 100 at various temperatures.

3 实验与仿真

3.1 实验设置

本文实验采用的 McKenna 平面燃烧器及宽带 紫外吸收光谱测量系统如图 4 所示.水冷 McKenna 平面燃烧器包含直径 60 mm 的不锈钢多孔圆盘和 外侧多孔黄铜环,高度可以通过步进电机控制的电 控升降台进行调节,移动精度为 5 μ m,从而确保在 光路不变的条件下实现不同高度的温度及组分浓 度测量. CH₄ (99.96%)和 NH₃ (99.99%)作为燃料, 流量分别为 0.784 和 0.087 L/min,摩尔分数比例 为 NH₃:CH₄ = 1:9,与流量为 9.72 L/min的干燥 空气在混气池中充分混合后通入不锈钢圆盘维持 平面火焰,整体当量比为 0.8. 另一路干燥空气流 量为 10 L/min,通入外侧黄铜环作为伴流气来保 持火焰稳定.四路气体的流量分别由四个质量流量 控制器控制, 干燥空气由空压机和干燥机提供, 含水 量低于 20×10⁻⁶ (0.7 MPa 压力露点温度< - 40 ℃).

图 4 同时给出了本文搭建的高空间分辨率宽 带紫外吸收光谱测量实验系统. 宽带光由激光驱动 白光光源 (Energetiq, EQ-99XFC LDLS) 提供, 通过 准直器形成准直光束,经过光阑 1,2和凸透镜 A 控制光束直径,穿过待测火焰区域后经过凸透镜 B 和柱透镜 C 汇聚到光谱仪 (Princeton Instruments, SP-2750) 中, 由 CCD 相机 (Princeton Instruments, ProEM HS) 采集. 为避免杂散光影响, 采用带通 滤光片在测量不同自由基时进行切换, 滤除待测波 长范围以外的光信号,每幅光谱采集时间为4s.在 火焰锋面内,即燃烧器上方高度 (height above the burner, HAB) 0.6—1.6 mm 的范围内, 均匀布置 21 个测点,用于测量火焰面内温度和 OH, NH 浓 度沿高度的分布;光束直径控制在 0.1 mm 左右, 以保证空间分辨率足够高,可以实现火焰面内快速 变化的温度和浓度曲线测量.为了验证实验工况和 测量的重复性,间隔一周后进行了 OH 宽带吸收光 谱重复实验,两次测量的温度和 OH 浓度分布对比 结果将在 4.1 节中讨论. 在火焰面上方, 测量了火 焰温度和 OH, NO 浓度的沿高度分布, 测点取为 HAB = 1.2, 1.4, 1.7, 2.1, 2.5, 3.0, 3.6, 4.1, 4.7,5.3, 6.5, 7.6, 10.1, 12.6 mm; 光束直径控制在 0.4 mm,降低了空间分辨率以提高 225 nm 附近 NO 测量的光强和信噪比.

3.2 CFD 仿真设置

在重力作用驱动下,常压平面火焰出现明显的 温度和浓度沿半径分布不均匀,因此进行二维轴对

Fig. 4. Schematic of the optical arrangement and the system of the McKenna burner with gas supply and cooling-water.

称 CFD 模拟考虑沿半径的分布,并结合 Abel 正 向积分得到基于仿真的温度浓度的高度分布曲线,从而与实验结果进行对比. CFD 模型的基本设置 和 Abel 正向积分的算法参考文献 [32]. CFD 仿真 采用 Okafor 等^[33]提出 NH₃/CH₄ 混合燃烧机理 (Okafor Mech),该机理由于组分和反应数目较少,已被成功用于二维直接数值模拟 (direct numerical simulation, DNS) 中^[38].

CFD 的网格密度和边界条件设置如图 5 所示. 网格由三种不同密度的部分组成,以满足不同的计 算需求.在火焰面附近 (HAB = 0—2 mm),为了 保证 NH 自由基浓度的计算精度,网格间隔沿高度 方向设置为 0.01 mm,沿半径方向为 0.2 mm.在 火焰面上方,由于主要计算对象 OH 和 NO 浓度对 网格密度的要求相对 NH 而言较低,沿高度方向网 格间隔从 0.01 mm 均匀增加到 1 mm.在燃烧器外 的区域,由于没有燃烧反应,只有重力和浮力驱动 的空气流动,网格间隔在两个方向上都是 1 mm. 图 5 还给出了计算的 OH 摩尔分数分布云图与火 焰照片的对比,在重力作用下的模拟和真实火焰的 形状相似,初步验证了 CFD 模拟的准确性.

图 5 CFD 网格和边界条件设置示意图、OH 云图和火焰 照片

Fig. 5. CFD setup of the grid and boundary conditions, together with the contour of OH mole fraction and the photo of the flame.

4 结果与讨论

4.1 火焰面内温度和 OH/NH 浓度分布测量

火焰面内 (HAB = 0.6—1.6 mm) 快速变化的 温度和 OH, NH 自由基浓度分布的精确测量可 以用于燃烧反应动力学机理的验证及优化.由于 OH 和 NH 采用相同光路,高度坐标完全相同,因 此可以对比分析两种自由基的温度测量效果.同时 相隔一周进行了单独的 OH 宽带吸收测量,与前一 组实验的 OH 浓度和温度进行对比,验证实验工况 与 OH 宽带吸收测量的重复性.

图 6 给出了在 NH 峰值所在高度 (HAB = 1.07 mm), 测量的 OH 和 NH 的吸收和基线, 以及利用 (5) 式处理得到的实验吸收率和拟合结果, 并在图中标出了拟合的温度和摩尔分数, 以及正负号后的 95% 概率拟合置信区间. (5) 式中的背景光谱 I_b 被预先采集扣除, 火焰辐射 I_f 通过光阑和狭缝阻挡消除, 因此采集的吸收为 $I_{f+1} = I_t \otimes \Phi$, 基线为 $I_1 = I_0 \otimes \Phi$. OH 拟合的均方根误差 (root-mean-square error, R_{MSE})为 1.78×10⁻³, 对应信噪比为 142, 拟合得到的温度和摩尔分数的置信区间小于 拟合结果的 1%, NH 拟合的 R_{MSE} 为 2.3×10⁻⁴, 对应信噪比为 125, 拟合的温度和摩尔分数置信区间

Fig. 6. Measured and fitted spectra of (a) OH and (b) NH at the same height of the NH peak value (HAB = 1.07 mm) with the instrumental resolution of 30 pm.

小于拟合结果的 2%, 展示了 OH 和 NH 宽带吸收 的高精度拟合结果.此外,如图 6(b)所示, NH 的拟 合残差主要是随机噪声,可以使用信噪比计算 NH 的 浓度检出限在 1560 K 时为 35×10⁻⁹ (1.8×10⁻⁹ m), 是已有研究中常压火焰 NH 吸收光谱测量的最低 检出限,与低压火焰中使用紫外 CRDS 达到的 100×10⁻⁹ 的检出限⁵ 处于同一水平.

图 7 给出了火焰面内 OH 和 NH 宽带吸收光 谱拟合的温度与浓度的高度分布曲线,实验 1 表示 同时测量 OH 和 NH 宽带吸收光谱的组别,实验 2 表示间隔一周后只测量 OH 宽带吸收光谱的重复 实验组别,图 7(a)中实验 2的 OH 温度误差棒是 拟合的 95% 概率置信区间,图 6(a)和图 6(b)对应 的数据点在图 7 中标出.如图 7(a)和图 7(b)所示, 两组实验中的 OH 宽带吸收测量结果展现了良好 的一致性,两组 OH 浓度曲线基本重合,实验 1 的温度曲线也基本在实验 2 的拟合置信区间内,表 明实验工况和 OH 宽带吸收测量具有很好的稳定 性和可重复性.图 7(a)中还对比了 OH 和 NH 的 宽带吸收测温结果,在 NH 浓度较高、信噪比较高 的范围内 (HAB = 0.9—1.2 mm), NH 和 OH 的温 度拟合结果基本保持一致,这说明 NH 宽带吸收在

图 7 火焰面内不同高度下两组实验中 OH 和 NH 拟合及 CFD 模拟的温度和摩尔分数分布

Fig. 7. The temperatures and concentrations of OH and NH in two experimental groups and simulation results from CFD at various heights inside the flame front. 火焰面中同样可以用于温度测量,当然其测温准确 度低于浓度和温度灵敏度更高的 OH. 但由于 NH 仅存在于火焰面内,可以预见在复杂燃烧环境中, NH 宽带吸收测量的温度可以避开已燃区域的干 扰而直接捕捉到火焰锋面处的温度,给出 OH, NO 或者 H₂O, CO₂等组分吸收光谱无法得到的温 度信息.实验测量的温度和 OH, NH 浓度曲线进 一步与 CFD 模拟结果进行对比,如图 7(c)所示, 在温度和浓度数值以及曲线形状上实验与 CFD 结 果基本符合,进一步验证了 OH 和 NH 宽带吸收测 量的准确性,而 NH 曲线宽度的一致性同时也反映 了实验测量系统的高空间分辨率.

4.2 火焰面上方温度和 OH/NO 浓度分布 测量

图 8 给出了靠近火焰面 (HAB = 1.38 mm) 的 OH(图 8(a)) 和 NO(图 8(b)) 以及远离火焰面 (HAB = 12.63 mm)的OH(图 8(c)) 和 NO(图 8(d)) 的宽带吸收光谱拟合.图 8(a) 中靠近火焰面位置 的 OH 浓度较高, 信噪比达到 192, 拟合置信区间 小于测量值的 0.6%; 图 8(c) 中远离火焰面的 OH 浓度低至 197×10⁻⁶, 但信噪比仍有 164, 拟合置信 区间小于测量值的 0.8%, 展示了不同浓度下 OH 宽 带吸收光谱的高精度拟合效果.此外,图 8(c)的 OH 弱吸收光谱拟合残差主要由随机噪声组成, *R*_{MSE} 为 3.2×10⁻⁴, 可以估算 OH 检出限在 1590 K 下为 1.2×10⁻⁶ (60×10⁻⁶ m), 明显优于 Bürkle 等^[7] 用 1.53 μm 红外 TDLAS 在火焰中测量的 OH 检 出限 92×10⁻⁶ (3.7×10⁻⁶ m).

图 8(b) 中靠近火焰面的 NO 宽带吸收光谱拟 合受到了 NH₃ 光谱的干扰,因此使用了 Weng 等^[30] 标定的 NH₃ 吸收截面进行修正 (在图中用橙色点 线表示). 但由于 Weng 等使用的光谱仪分辨率与 本文实验装置不同且波长标定存在偏差, NO 的光 谱拟合准确性仍然受到影响, 拟合残差较大, 剩余 标准差为 1.4×10⁻³, 拟合的 95% 置信区间达到拟 合结果的 3%. 由于火焰面上方 NH₃ 应当已经完全 燃烧,可以判断该部分 NH₃ 是从平面火焰与伴流 气的交界面逸出,与 Yang 等^[32] 在 CH₄/air 平面 火焰的 CO-TDLAS 测量中发现的 CH₄ 干扰类似. 图 8(d) 中远离火焰面的 NO 拟合具有更准确的结 果, 拟合残差主要是随机噪声, *R*_{MSE} 为 7×10⁻⁴, 拟合置信区间小于拟合结果的 1%, 而且可以估算

图 8 近火焰面的高度 (HAB = 1.38 mm) 下 (a) OH 和 (b) NO 以及远离火焰面的高度 (HAB = 12.63 mm) 下 (c) OH 和 (d) NO 的测量和拟合光谱, 310 nm 附近 OH 光谱分辨率 30 pm, 225 nm 附近 NO 光谱分辨率 34 pm

Fig. 8. Measured and fitted spectra near the flame (HAB = 1.38 mm) of (a) OH and (b) NO and the spectra far away the flame (HAB = 12.63 mm) of (c) OH and (d) NO with the instrumental resolution of 30 pm at 310 nm and of 34 pm at 225 nm.

检出限在 1380 K 下仅为 21×10⁻⁶ (1×10⁻⁶ m), 明显 优于 Shang 等^[12]用 5.26 μm 中红外 QCL-TDLAS 测量的 1400 K 下 NO 检出限 200×10⁻⁶ (10×10⁻⁶ m). 上述 OH 和 NO 浓度的低检出限, 展示了宽带紫外 吸收光谱在两种组分浓度测量方面的优势.

此外,对比 OH 和 NO 的测温结果可以发现, 靠近火焰面位置 OH 和 NO 测量的温度非常一致, 而远离火焰面后 OH 测量的温度明显高于 NO. 这 是由于在吸收光谱沿光路积分的测量下,火焰外围 低温区域吸收降低了沿光路的平均温度,包括 NO 或者 TDLAS 中常用的 CO₂ 和 H₂O 分子均会 因为该因素而影响测温准确性;与之相比,OH 基 本不存在于 1000 K 以下的低温区域,因此受到的 影响明显更小. 但也可以预见,NO 宽带吸收光谱 相比于 OH 具有在低温区域测温的能力,可以补 充 OH 测温区域的空白,应用于燃烧上游或火焰外 围的温度测量.

图 9 中对比了实验测量的温度和 NO, OH 摩

尔分数随高度的变化以及相应的 CFD 模拟结果. 其中,温度与 OH 摩尔分数均来自于 OH 宽带吸收 光谱的拟合结果,并且包含了火焰面内和火焰面上 方两部分的实验和 CFD 结果. 如图 9 所示, 实验 测量的温度和 OH, NO 摩尔分数的数值与曲线变 化趋势均与 CFD 结果基本保持一致, 验证了 OH 和 NO 宽带吸收的温度与绝对浓度测量能力. 但可 以发现实验测得的温度曲线和 CFD 结果存在均匀 的约 60 K 的偏差, 而 OH 浓度峰值则偏差了约 300×10⁻⁶. 考虑到燃料中 90% 是 CH₄, 是影响温度 和 OH 浓度的主要燃料,因此推测温度和 OH浓度 偏差的原因主要是 CFD 使用的 Okafor 机理中来 自于 GRI-Mech 3.0 的碳相关子机理准确性不足. 该部分子机理主要源自上世纪的反应动力学数据, 因此可能需要对其进行进一步提升改进以提高 Okafor 机理对 CH₄/NH₃ 混合燃烧的温度和 OH 浓度预测的准确性.

图 9 温度和 OH, NO 摩尔分数的高度分布

Fig. 9. The temperatures and mole fractions of OH and NO at various heights.

5 结 论

本文针对常用的红外 TDLAS 测量方法难以 实现火焰中 OH, NO, NH 等低浓度自由基或分子 绝对浓度测量的现状,使用宽带紫外吸收光谱实现 了火焰温度和 OH, NO, NH 浓度的同步测量.通 过理论分析展示了紫外吸收光谱由于强吸收和免 受燃烧产物干扰而具有的低检出限优势,并结合仿 真模拟定性和定量比较了三种光谱的温度灵敏度. 分析结果表明,由于宽带吸收同时测量大量谱线, 三种自由基均具有较高的测温灵敏度,在光谱信噪 比为 100 条件下仿真得到温度拟合相对不确定度 小于 1%;同时由于下能级分布和谱线数量的差异, 不同分子光谱的温度灵敏度不同: NO > OH > NH, 在 2000 K下 NO 测温灵敏度是 OH 的 3 倍, NH 的 8 倍.

随后,针对 NH₃/CH₄/air 常压平面预混火焰, 利用宽带紫外吸收光谱实现了火焰温度和 OH, NH, NO 摩尔分数同步测量.实验实现了三种组分 的低检出限测量: NH 的 1 σ 检出限达到 1.8×10⁻⁹ m (1560 K),在常压火焰中实现了 10⁻⁹ 量级的 NH 吸 收光谱测量; OH 和 NO 的 1 σ 检出限分别达到了 60×10⁻⁹ m (1590 K) 和 1×10⁻⁶ m (1380 K),也明 显优于现有的红外 TDLAS 测量的检出限,展示了 宽带紫外吸收对于三种组分的浓度测量优势.进一 步,在火焰面内,同步测量了 OH, NH 浓度和各自 拟合的温度沿高度的分布,且 OH 与 NH 拟合的温 度保持一致; 在火焰上方同步测量了 OH, NO浓度 和温度沿高度的分布,在靠近火焰面位置 OH和 NO 拟合的温度保持一致,验证了三种组分宽带吸 收光谱的温度和浓度同步测量能力.同时还对比了 三种组分各自适用的不同测温环境: OH 适用于 1000 K 以上的高温燃烧环境, NH 适用于复杂燃 烧场中捕捉火焰锋面温度, 而 NO 适用于 1000 K 以下低温区域弥补 OH 测温区域的空白. 此外, 实 验结果与基于 Okafor 机理的 CFD 仿真结果基本 符合,验证了宽带吸收的温度与浓度测量的效果, 也指出 Okafor 机理中的碳相关子机理还需要进一 步提升优化.本文使用宽带紫外吸收光谱实现了温 度和 OH, NH, NO 多组分浓度同步测量, 方法成 本较低、结构原理简单,为燃烧场的吸收光谱诊断 提供了新的测量方法参考.

参考文献

- Anderson T N, Lucht R P, Priyadarsan S, Annamalai K, Caton J A 2007 Appl. Opt. 46 3946
- [2] Wang S K, Hanson R K 2018 Appl. Phys. B 124 37
- [3] Somarathne K, Okafor E C, Sugawara D, Hayakawa A, Kobayashi H 2021 Proc. Combust. Inst. 38 5163
- [4] Zhang M, An Z H, Wang L, Wei X T, Jianayihan B, Wang J H, Huang Z H, Tan H Z 2021 Int. J. Hydrogen Energy 46 21013
- [5] Lamoureux N, Gasnot L, Desgroux P 2019 Proc. Combust. Inst. 37 1313
- [6] Li S, Zhang S S, Zhou H, Ren Z Y 2019 Fuel 237 50
- [7] Bürkle S, Dreizler A, Ebert V, Wagner S 2018 Fuel 212 302
- [8] Peng Z M, Du Y J, Ding Y J 2020 Sensors 20 616
- [9] Cheong K P, Ma L H, Wang Z, Ren W 2019 Appl. Spectrosc. 73 529
- [10] Hanson R K, Davidson D F 2014 Prog. Energy Combust. Sci. 44 103
- [11] He D, Ding Y J, Shi L, Zheng D, Peng Z M 2021 Combust. Flame 232 111537
- [12] Shang Y L, Wang Z, Ma L H, Shi J C, Ning H B, Ren W, Luo S N 2021 Proc. Combust. Inst. 38 1745
- [13] Ma L, Li X S, Sanders S T, Caswell A W, Roy S, Plemmons D H, Gord J R 2013 Opt. Express 21 1152
- [14] Azimov U, Kawahara N, Tomita E 2016 Fuel 182 807
- [15] Cassady S J, Peng W Y, Strand C L, Dausen D F, Codoni J R, Brophy C M, Hanson R K 2021 Proc. Combust. Inst. 38 1719
- [16] Goldenstein C S, Spearrin R M, Jeffries J B, Hanson R K 2017 Prog. Energy Combust. Sci. 60 132
- [17] Gao Z W, Gao G Z, Cai T D 2021 Appl. Phys. B 127 158
- [18] Anderson W R, Decker L J, Kotlar A J 1982 Combust. Flame 48 179
- [19] Branch M C, Sadeqi M E, Alfarayedhi A A, Vantiggelen P J

1991 Combust. Flame 83 228

- [20] Derzy I, Lozovsky V A, Ditzian N, Rahinov I, Cheskis S 2000 Proc. Combust. Inst. 28 1741
- [21] Bruggeman P, Cunge G, Sadeghi N 2012 Plasma Sources Sci. Technol. 21 035019
- [22] Du Y J, Nayak G, Oinuma G, Ding Y J, Peng Z M, Bruggeman P J 2017 Plasma Sources Sci. Technol. 26 095007
- [23] Schroter S, Wijaikhum A, Gibson A R, West A, Davies H L, Minesi N, Dedrick J, Wagenaars E, de Oliveira N, Nahon L, Kushner M J, Booth J P, Niemi K, Gans T, O'Connell D 2018 Phys. Chem. Chem. Phys. 20 24263
- [24] Brisset A, Gibson A R, Schroter S, Niemi K, Booth J P, Gans T, O'Connell D, Wagenaars E 2021 J. Phys. D:Appl. Phys. 54 285201
- [25] Sepman A, Gullberg M, Wiinikka H 2020 Appl. Phys. B 126 100
- [26] Lempert W R 1988 Combust. Flame 73 89
- [27] Liu Y, Liu W Q, Kan R F, Si F Q, Xu Z Y, Hu R Z, Xie P H
 2011 Spectrosc. Spectr. Anal. 31 2659 (in Chinese) [刘宇, 刘 文清, 阚瑞峰, 司福祺, 许振宇, 胡仁志, 谢品华 2011 光谱学与
 光谱分析 31 2659]
- [28] Weng W B, Alden M, Li Z S 2019 Anal. Chem. 91 10849

- [29] Vilches T B, Weng W B, Glarborg P, Li Z S, Thunman H, Seemann M 2020 Fuel 273 117762
- [30] Weng W B, Li S, Alden M, Li Z S 2021 Appl. Spectrosc. 75 1168
- [31] White L, Gamba M 2018 J. Quant. Spectrosc. Radiat. Transfer 209 73
- [32] Yang X Y, Peng Z M, Ding Y J, Du Y J 2021 Fuel 288 119666
- [33] Okafor E C, Naito Y, Colson S, Ichikawa A, Kudo T, Hayakawa A, Kobayashi H 2018 Combust. Flame 187 185
- [34] Gordon I E, Rothman L S, Hargreaves R J, et al. 2022 J. Quant. Spectrosc. Radiat. Transfer 277 107949
- [35] Rothman L S, Gordon I E, Barber R J, Dothe H, Gamache R R, Goldman A, Perevalov V I, Tashkun S A, Tennyson J 2010 J. Quant. Spectrosc. Radiat. Transfer 111 2139
- [36] Tennyson J, Yurchenko S N, Al-Refaie A F, et al. 2020 J. Quant. Spectrosc. Radiat. Transfer 255 107228
- [37] Girard J J, Choudhary R, Hanson R K 2018 J. Quant. Spectrosc. Radiat. Transfer 221 194
- [38] Rocha R C, Zhong S H, Xu L L, Bai X S, Costa M, Cai X, Kim H, Brackmann C, Li Z S, Alden M 2021 Energy Fuels 35 7179

Synchronic measurements of temperatures and concentrations of OH, NH, and NO in flames based on broadband ultraviolet absorption spectroscopy^{*}

Yang Xin-Yu $^{1)2)}$ Peng Zhi-Min $^{2)}$ Ding Yan-Jun $^{2)}$ Du Yan-Jun $^{1)\dagger}$

1) (School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China)

2) (State Key Laboratory of Power Systems, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China)

(Received 29 January 2022; revised manuscript received 20 April 2022)

Abstract

Temperature is an important parameter influencing the combustion reaction path and rate and determining the combustion and energy exchange efficiency. The OH, NH, NO and other species are involved in the key elementary reactions of combustion and determine the generation of NO_x pollutants. Therefore, temperature and concentration measurements of OH, NH, and NO are of great significance for combustion diagnostics and research on reaction or emission mechanisms. In this work, a measurement system with high spatial resolution based on broadband ultraviolet absorption spectroscopy is established to realize simultaneous measurements of the temperature and concentrations of OH, NH, and NO in flames. Low detection limits of these three species are achieved by using the established measurement method. The 1σ detection limit of NH is 1.8 ppb·m (1560 K), which is realized for the first time in atmospheric-pressure flames using absorption spectroscopy. The 1σ detection limits of OH and NO are 60 ppb·m (1590 K) and 1 ppm·m (1380 K), respectively, which are obviously better than the existing results obtained by using infrared laser absorption spectroscopy. Then, the distributions of temperatures and concentrations of OH, NO and NH are acquired at various heights in an atmospheric-pressure $NH_3/CH_4/air$ premixed flat flame with a high spatial resolution of nearly 0.1 mm. The broadband absorption spectra of OH and NH are acquired simultaneously inside the flame front, and the spectra of OH and NO are acquired simultaneously above the flame front. Inside or near the flame front, the temperatures deduced from the spectra of OH, NH, and NO are consistent, verifying the ability of these three species to be used to measure temperature. In addition, OH, NH, and NO are found to be suitable for different regions in combustion. The OH absorption is suitable for the post-combustion region with temperatures higher than 1000 K, the NH absorption can be used to acquire the temperature inside the flame front in complex combustion, and the NO absorption was able to provide the temperature in the region before or outside combustion at lower temperatures. Additionally, the experimental temperature and concentration profiles are in good agreement with the computational fluid dynamics predictions based on the mechanism, exhibiting the accuracy of the simultaneous temperature and concentration measurements by using broadband ultraviolet absorption spectra. Moreover, the differences in temperature and OH concentration between experiments and simulations indicate that the carbon sub-mechanism in the mechanism given by Okafor et al. [Okafor E C, Naito Y, Colson S, Ichikawa A, Kudo T, Hayakawa A, Kobayashi H 2018 Combust. Flame 187 185] should be further improved for more accurate predictions of NH_3/CH_4 combustion.

Keywords: broadband ultraviolet absorption spectroscopy, combustion diagnostics, temperature measurements, concentration measurements

PACS: 33.20.lg, 47.70.Pq, 07.60.Rd, 47.80.Fg

DOI: 10.7498/aps.71.20220208

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 51906120, 11972213) and the Science and Technology Project of China Huaneng Group, China (Grant No. HNKJ20-H50).

[†] Corresponding author. E-mail: duyanjun13@gmail.com